Бенуа Мандельброт - Фрактальная геометрия природы

Тут можно читать онлайн Бенуа Мандельброт - Фрактальная геометрия природы - бесплатно полную версию книги (целиком) без сокращений. Жанр: Математика, год 2002. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.

Бенуа Мандельброт - Фрактальная геометрия природы краткое содержание

Фрактальная геометрия природы - описание и краткое содержание, автор Бенуа Мандельброт, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Классическая книга основателя теории фракталов, известного американского математика Б. Мандельброта, которая выдержала за рубежом несколько изданий и была переведена на многие языки. Перевод на русский язык выходит с большим опозданием (первое английское издание вышло в 1977 г.). За прошедший период книга совсем не устарела и остается лучшим и основным введением в теорию фракталов и фрактальную геометрию. Написанная в живой и яркой манере, она содержит множество иллюстраций (в том числе и цветных), а также примеров из различных областей науки.
Для студентов и аспирантов, физиков и математиков, инженеров и специалистов.

Фрактальная геометрия природы - читать онлайн бесплатно полную версию (весь текст целиком)

Фрактальная геометрия природы - читать книгу онлайн бесплатно, автор Бенуа Мандельброт
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

И все же даже после того, как мы отбросили самые крупные и самые мелкие детали, величина D продолжает означать эффективную размерность в том виде, в каком она описана в главе 3. Строго говоря, и треугольник, и звезда Давида, и конечные терагоны Коха имеют размерность 1. Однако — как с интуитивной, так и с прагматической точки зрения, руководствующейся простотой и естественностью необходимых поправочных членов — разумнее рассматривать терагон Коха на одной из поздних стадий построения как фигуру, более близкую к кривой с размерностью ln4 / ln3, нежели к кривой с размерностью 1.

Что же касается береговой линии, то она, вероятнее всего, имеет несколько различных размерностей (вспомните клубок ниток из третьей главы). Ее географической размерностью является показатель Ричардсона D . Но в диапазоне размеров, которыми занимается физика, размерность береговой линии может быть совсем иной — связанной с понятием границы раздела между водой, воздухом и песком.

АЛЬТЕРНАТИВНЫЕ ГЕНЕРАТОРЫ КОХА И КРИВЫЕ КОХА БЕЗ САМОПЕРЕСЕЧЕНИЙ

Сформулируем еще раз основной принцип построения троичной кривой Коха. Построение начинается с двух фигур: инициатора и генератора. Последний представляет собой ориентированную ломаную, состоящую из N равных отрезков длины r . В начале каждого этапа построения мы имеем некоторую ломаную; сам этап заключается в замене каждого прямого участка копией генератора, уменьшенной и смещенной так, чтобы ее концевые точки совпали с концевыми точками заменяемого отрезка. На каждом этапе D= ln N/ ln (1/r) .

Нетрудно изменить общий вид получаемой конструкции путем модификации генератора; особенно интересны сочетания выступов и впадин — примеры можно найти на следующих после главы иллюстрациях. Таким образом, можно получить различные терагоны Коха, сходящиеся к кривым, размерности которых находятся в интервале от 1 до 2.

Все эти кривые Коха нигде не пересекают сами себя, поэтому при определении D их можно без какой бы то ни было неоднозначности делить на непересекающиеся части. Однако если при построении кривой Коха использовать небрежно подобранные генераторы, существует известный риск получить самокасание или самопересечение, а то и самоперекрытие. Если желаемое значение D достаточно мало, то тщательным подбором генератора можно легко избежать появления двойных точек. Задача резко усложняется при увеличении D , однако пока значение D остается меньше 2, решение существует.

Если же попытаться получить с помощью вышеописанного построения кривую Коха с размерностью больше 2, то мы неизбежно придем к кривым, которые покрывают плоскость бесконечно много раз. Случай D=2 заслуживает особого рассмотрения, и мы займемся им в главе 7.

ДУГИ И ПОЛУПРЯМЫЕ КОХА

В некоторых случаях возникает необходимость в педантичной замене термина «кривая Коха» чем-нибудь более точным и подходящим. Например, фигура, изображенная на рис. 73 внизу, формально является коховым отображением отрезка прямой и может быть названа дугой Коха. Как следствие, граничная линия на рис. 74 оказывается составленной из трех дуг Коха. Часто бывает полезно экстраполировать дугу в полупрямую Коха — экстраполяция увеличивает исходную дугу сначала в 1/r=3 раза, используя ее левую концевую точку как фокус, затем в 3 2 раз и т. д. Результат каждой следующей экстраполяции включает в себя предыдущую кривую, и получающаяся в пределе кривая содержит все промежуточные конечные кривые.

ЗАВИСИМОСТЬ МЕРЫ ОТ РАДИУСА ПРИ ДРОБНОМ ЗНАЧЕНИИ D

Рассмотрим еще одну стандартную ситуацию евклидовой геометрии и обобщим ее с учетом фрактальных размерностей. В случае идеальных однородных физических объектов плотности ρ мы можем считать, что масса M(R) стержня длиной 2R , диска или шара радиуса R пропорциональна ρR E . При E = 1,2 и 3 коэффициенты пропорциональности соответственно равны 2 , и 4π/3 .

Правило M(R)∝R D применимо и к фракталам, при условии, что они самоподобны.

В случае троичных кривых Коха это утверждение доказывается проще всего, если начало координат совпадает с концевой точкой полупрямой Коха. Если круг радиуса R 0 =3 k (где k≥0 ) содержит массу M(R 0 ) , то круг радиуса R=R 0 /3 вместит в себя массу M(R)=M(R 0 )/4 . Отсюда

M(R)=M(R 0)(R/R 0) D=[M(R 0)R 0 −D]R D .

Следовательно, отношение M(R)/R D не зависит от радиуса R и может послужить для определения плотности ρ .

ДВИЖЕНИЕ КОХА

Представьте себе точку, движущуюся вдоль полупрямой Коха и проходящую за одинаковые интервалы времени дуги одинаковой меры. Если теперь обратить функцию, определяющую время как зависимость от положения точки, то мы получим функцию, определяющую положение точки как зависимость от времени, т. е. функцию движения. Скорость такого движения, разумеется, бесконечна.

СЛУЧАЙНЫЕ БЕРЕГОВЫЕ ЛИНИИ: ПРЕДВАРИТЕЛЬНЫЙ ВЗГЛЯД

Кривая Коха похожа на настоящие береговые линии, однако она имеет кое-какие существенные недостатки (эти недостатки практически в неизменном виде присущи всем ранним моделям рассматриваемых в настоящем эссе прецедентов). Ее части идентичны одна другой, а коэффициент само подобия r непременно задается жесткой шкалой вида b −k , где b — целое число, т. е. r=1/3 , (1/3) 2 и т.д. Таким образом, кривую Коха можно считать лишь очень предварительной моделью береговой линии.

Я разработал несколько способов избавления от этих недостатков, однако ни один из них не обходится без известных вероятностных усложнений, с которыми нам на данный момент не справиться: сначала следует уладить множество вопросов, касающихся неслучайных фракталов. Интересующемуся же читателю, знакомому с теорией вероятности, ничто не мешает заглянуть немного вперед и полюбоваться на модели, основанные на моих «сквиг-кривых» (см. главу 24) и, что более важно, на линиях уровня дробных броуновских поверхностей (см. главу 28).

Здесь и далее я использую следующий способ представления материала. Многочисленные узоры, создаваемые Природой, рассматриваются на фоне упорядоченных фракталов, которые могут служить пусть и очень приблизительными, но все же моделями рассматриваемых феноменов, тогда как предлагаемые мною случайные модели отнесены в более поздние главы.

Памятка.Во всех случаях, когда значение D известно точно, не является целым числом и записано в десятичной форме с целью облегчения сравнений, в нем сохраняются четыре знака после запятой. Число 4 было выбрано исходя из следующих соображений: я хотел показать, что в данном случае значение D не является ни эмпирическим (все эмпирические значения в настоящее время известны с точностью до одного или двух десятичных знаков), ни не вполне определенным геометрическим значением (все подобные значения в настоящее время известны либо с точностью до одного-двух десятичных знаков, либо с точностью до шести десятичных знаков).

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Бенуа Мандельброт читать все книги автора по порядку

Бенуа Мандельброт - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Фрактальная геометрия природы отзывы


Отзывы читателей о книге Фрактальная геометрия природы, автор: Бенуа Мандельброт. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x