Эдвард Шейнерман - Путеводитель для влюбленных в математику

Тут можно читать онлайн Эдвард Шейнерман - Путеводитель для влюбленных в математику - бесплатно ознакомительный отрывок. Жанр: Математика, издательство Литагент Альпина, год 2018. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Путеводитель для влюбленных в математику
  • Автор:
  • Жанр:
  • Издательство:
    Литагент Альпина
  • Год:
    2018
  • Город:
    Москва
  • ISBN:
    978-5-9167-1131-8
  • Рейтинг:
    4/5. Голосов: 21
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Эдвард Шейнерман - Путеводитель для влюбленных в математику краткое содержание

Путеводитель для влюбленных в математику - описание и краткое содержание, автор Эдвард Шейнерман, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Принято считать, что математика – наука точная и совершенно скучная, но Эдвард Шейнерман берется доказать обратное. Он утверждает, что математика бывает не менее увлекательной, чем гуманитарные дисциплины. Как объяснить тот факт, что бо́льшая часть окружающих нас чисел начинается на единицу, а тех, что начинаются на девятку, – совсем мало? Каков наилучший путь выиграть выборы, если победителями становятся больше двух кандидатов? Как понять, насколько можно доверять даже самому высокоточному медицинскому тесту? Можно ли покрыть весь пол паркетинами в виде правильных пятиугольников и не оставить зазоров? Как проверить, не сфабрикована ли налоговая отчетность, всего лишь проанализировав первые цифры денежной суммы? Может ли математика пролить свет на вопрос о свободе воли? Ответы на все эти и многие другие вопросы вы найдете в этой книге. Автор приглашает читателя испытать свои силы в решении математических головоломок и станет вашим гидом в захватывающем и комфортном путешествии по миру чисел, геометрических фигур и теории вероятностей. Достаточно школьных знаний алгебры, а итогом станет незабываемая радость знакомства с основами математического мышления.

Путеводитель для влюбленных в математику - читать онлайн бесплатно ознакомительный отрывок

Путеводитель для влюбленных в математику - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Эдвард Шейнерман
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Можно задаться более фундаментальным вопросом: существуют ли другие числа?

Диагональ квадрата

Каково расстояние между противоположными вершинами квадрата? Позже, в главе 14, мы обсудим решение этой задачи. Сейчас же достаточно знать, что длина диагонали квадрата 1 × 1 равна √2

Если умножить число √2 само на себя (другими словами, возвести в квадрат), мы получим 2. Посчитайте приблизительное значение √2 на калькуляторе. А теперь давайте посмотрим, можно ли приблизиться к этому числу с помощью ручки и бумаги.

Начнем с того, что, если возвести в квадрат 0, получится 0, а если возвести в квадрат 1, получится 1. Наша цель 2, а найденные числа меньше. С другой стороны, если возвести в квадрат 2, мы получим 4, а если возвести в квадрат 3, получим 9. Это больше, чем нам нужно.

1² – слишком ма́ло, 2² – слишком много. Попробуем найти величину между 1 и 2, перемещаясь с шагом 0,1, как показано в таблице.

Легко заметить 14 слишком мало для квадратного корня из двух а 15 слишком - фото 33

Легко заметить: 1,4 слишком мало для квадратного корня из двух, а 1,5 – слишком велико. Следовательно, √2 лежит между этими двумя величинами.

Продолжим в том же духе. Будем возводить в квадрат числа между 1,4 и 1,5, двигаясь с шагом 0,01. Мы обнаружим, что 1,41² = 1,9881, а 1,42² = 2,0164. Из этого можно сделать умозаключение, что Путеводитель для влюбленных в математику - изображение 34

Мы можем двигаться таким образом все дальше и дальше приближаясь к 2 Рано или - фото 35

Мы можем двигаться таким образом все дальше и дальше, приближаясь к √2

Рано или поздно мы либо успокоимся (достигнув числа, фантастически близкого к картинка 36либо почувствуем отчаяние (увидев, что никогда не сможем точно вычислить √2

Но что означает это «точно»?

За границами рационального

Разумный способ определить точное значение числа – представить его в виде рационального числа, то есть отношения двух целых чисел. Если бы мы сумели представить √2 в виде дроби картинка 37где a и b – целые числа, мы бы нашли его точное значение.

Увы, но такое невозможно. Однако это нужно доказать.

Теорема.√2 не является рациональным числом.

Будем идти от противного, как и в главе 1, где мы подсчитывали количество простых чисел. Предположим, что √2 – рациональное число. Если это допущение приведет к абсурдным выводам, значит, оно несостоятельно.

Итак, приступим. Если √2 – рациональное число, его можно выразить в виде отношения двух целых чисел:

Путеводитель для влюбленных в математику - изображение 38

Возведем обе части тождества в квадрат:

Путеводитель для влюбленных в математику - изображение 39

Раскроем скобки:

Путеводитель для влюбленных в математику - изображение 40

Таким образом:

Путеводитель для влюбленных в математику - изображение 41

или:

2 b ² = a ². (С)

Если a – целое число, мы можем разложить его на простые множители, причем (согласно основной теореме арифметики) одним-единственным способом:

a = pp 2× … × p n .

Проделаем аналогичную процедуру с b :

b = qq 2× … × q m .

Следовательно, левую часть равенства (С) можно представить в таком виде:

2 b ² = 2 × ( qq 2× … × q m )² = 2 × ( qq 1) × ( qq 2) × … × ( q m × q m ).

Несложно заметить, что 2 b ² раскладывается на нечетное число простых множителей.

Аналогично поступаем с правой частью (С):

a ² = ( pp 2× … × p n ) ² = ( pp 1) × ( pp 2) × … × ( p n × p n ).

В отличие от 2 b ², выражение a ² раскладывается на четное число простых множителей.

Подытожим. В соответствии с нашим предположением 2 b ² = a ². Это означает, что некоторое число одновременно можно разложить на четное и нечетное количество простых множителей. Но это противоречит основной теореме арифметики.

Мы пришли к невозможному выводу. Таким образом, наша изначальная посылка была ошибочна. Следовательно, √2 не является рациональным числом.

Такие числа, как √2 называют иррациональными . Рациональные числа хороши для операций с физическими величинами [43] Не со всеми: есть физические величины, про которые нет оснований полагать, что отношения между ними выражаются в рациональных числах. Впрочем, как следует из сказанного выше, можно добиться сколь угодно точного приближения рациональными числами. – Прим. науч. ред. , но их недостаточно для всех математических величин. Длина диагонали квадрата 1 × 1 – иррациональное число.

Конструктивные числа

Начав с числа 1 и шаг за шагом проделывая операции сложения, вычитания и умножения, мы можем получить любое целое число, но и только. Если мы добавим операцию деления, нам откроются все рациональные числа, но ими же мы и будем ограничены.

Если мы введем операцию извлечения квадратного корня [44] Здесь мы рассматриваем исключительно квадратные корни из неотрицательных чисел. В главе 5 мы увидим, что в математике есть область, где можно извлекать квадратный корень из отрицательного числа. , то получим числа, которые не являются отношением целых чисел. Например:

Для удобства мы будем называть конструктивными такие числа которые можно - фото 42

Для удобства мы будем называть конструктивными такие числа, которые можно получить с помощью числа 1 и пяти операций – сложения, вычитания, умножения, деления и извлечения квадратного корня – с привычными оговорками: нельзя делить на ноль и извлекать корень из отрицательных величин.

Разумеется, возникает вопрос: все ли числа конструктивные?

Древние греки усматривали магическую внутреннюю связь между арифметикой и геометрией. Эта связь подтверждалась операциями с использованием двух инструментов: линейки без делений и циркуля. Возьмем отрезок единичной длины; какова может быть длина отрезков, построенных на его основе с помощью карандаша, линейки без делений и циркуля?

Складывать и вычитать отрезки просто. Пусть у нас есть отрезки длиной a и b . С помощью линейки мы продлеваем первый отрезок. Ставим иглу циркуля в начало второго отрезка, а острие карандаша на другой ножке циркуля – в конец отрезка. После этого мы перемещаем иглу в конец первого отрезка и отмечаем точку на продленной линии. Так мы находим сумму двух отрезков. Что касается вычитания, оно будет означать не приращение, а укорочение отрезков.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Эдвард Шейнерман читать все книги автора по порядку

Эдвард Шейнерман - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Путеводитель для влюбленных в математику отзывы


Отзывы читателей о книге Путеводитель для влюбленных в математику, автор: Эдвард Шейнерман. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x