Эдвард Шейнерман - Путеводитель для влюбленных в математику
- Название:Путеводитель для влюбленных в математику
- Автор:
- Жанр:
- Издательство:Литагент Альпина
- Год:2018
- Город:Москва
- ISBN:978-5-9167-1131-8
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Эдвард Шейнерман - Путеводитель для влюбленных в математику краткое содержание
Путеводитель для влюбленных в математику - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Можно задаться более фундаментальным вопросом: существуют ли другие числа?
Каково расстояние между противоположными вершинами квадрата? Позже, в главе 14, мы обсудим решение этой задачи. Сейчас же достаточно знать, что длина диагонали квадрата 1 × 1 равна √2
Если умножить число √2 само на себя (другими словами, возвести в квадрат), мы получим 2. Посчитайте приблизительное значение √2 на калькуляторе. А теперь давайте посмотрим, можно ли приблизиться к этому числу с помощью ручки и бумаги.
Начнем с того, что, если возвести в квадрат 0, получится 0, а если возвести в квадрат 1, получится 1. Наша цель 2, а найденные числа меньше. С другой стороны, если возвести в квадрат 2, мы получим 4, а если возвести в квадрат 3, получим 9. Это больше, чем нам нужно.
1² – слишком ма́ло, 2² – слишком много. Попробуем найти величину между 1 и 2, перемещаясь с шагом 0,1, как показано в таблице.

Легко заметить: 1,4 слишком мало для квадратного корня из двух, а 1,5 – слишком велико. Следовательно, √2 лежит между этими двумя величинами.
Продолжим в том же духе. Будем возводить в квадрат числа между 1,4 и 1,5, двигаясь с шагом 0,01. Мы обнаружим, что 1,41² = 1,9881, а 1,42² = 2,0164. Из этого можно сделать умозаключение, что

Мы можем двигаться таким образом все дальше и дальше, приближаясь к √2
Рано или поздно мы либо успокоимся (достигнув числа, фантастически близкого к либо почувствуем отчаяние (увидев, что никогда не сможем точно вычислить √2
Но что означает это «точно»?
Разумный способ определить точное значение числа – представить его в виде рационального числа, то есть отношения двух целых чисел. Если бы мы сумели представить √2 в виде дроби где a и b – целые числа, мы бы нашли его точное значение.
Увы, но такое невозможно. Однако это нужно доказать.
Теорема.√2 не является рациональным числом.
Будем идти от противного, как и в главе 1, где мы подсчитывали количество простых чисел. Предположим, что √2 – рациональное число. Если это допущение приведет к абсурдным выводам, значит, оно несостоятельно.
Итак, приступим. Если √2 – рациональное число, его можно выразить в виде отношения двух целых чисел:

Возведем обе части тождества в квадрат:

Раскроем скобки:

Таким образом:

или:
2 b ² = a ². (С)
Если a – целое число, мы можем разложить его на простые множители, причем (согласно основной теореме арифметики) одним-единственным способом:
a = p 1× p 2× … × p n .
Проделаем аналогичную процедуру с b :
b = q 1× q 2× … × q m .
Следовательно, левую часть равенства (С) можно представить в таком виде:
2 b ² = 2 × ( q 1× q 2× … × q m )² = 2 × ( q 1× q 1) × ( q 2× q 2) × … × ( q m × q m ).
Несложно заметить, что 2 b ² раскладывается на нечетное число простых множителей.
Аналогично поступаем с правой частью (С):
a ² = ( p 1× p 2× … × p n ) ² = ( p 1× p 1) × ( p 2× p 2) × … × ( p n × p n ).
В отличие от 2 b ², выражение a ² раскладывается на четное число простых множителей.
Подытожим. В соответствии с нашим предположением 2 b ² = a ². Это означает, что некоторое число одновременно можно разложить на четное и нечетное количество простых множителей. Но это противоречит основной теореме арифметики.
Мы пришли к невозможному выводу. Таким образом, наша изначальная посылка была ошибочна. Следовательно, √2 не является рациональным числом.
Такие числа, как √2 называют иррациональными . Рациональные числа хороши для операций с физическими величинами [43] Не со всеми: есть физические величины, про которые нет оснований полагать, что отношения между ними выражаются в рациональных числах. Впрочем, как следует из сказанного выше, можно добиться сколь угодно точного приближения рациональными числами. – Прим. науч. ред.
, но их недостаточно для всех математических величин. Длина диагонали квадрата 1 × 1 – иррациональное число.
Начав с числа 1 и шаг за шагом проделывая операции сложения, вычитания и умножения, мы можем получить любое целое число, но и только. Если мы добавим операцию деления, нам откроются все рациональные числа, но ими же мы и будем ограничены.
Если мы введем операцию извлечения квадратного корня [44] Здесь мы рассматриваем исключительно квадратные корни из неотрицательных чисел. В главе 5 мы увидим, что в математике есть область, где можно извлекать квадратный корень из отрицательного числа.
, то получим числа, которые не являются отношением целых чисел. Например:

Для удобства мы будем называть конструктивными такие числа, которые можно получить с помощью числа 1 и пяти операций – сложения, вычитания, умножения, деления и извлечения квадратного корня – с привычными оговорками: нельзя делить на ноль и извлекать корень из отрицательных величин.
Разумеется, возникает вопрос: все ли числа конструктивные?
Древние греки усматривали магическую внутреннюю связь между арифметикой и геометрией. Эта связь подтверждалась операциями с использованием двух инструментов: линейки без делений и циркуля. Возьмем отрезок единичной длины; какова может быть длина отрезков, построенных на его основе с помощью карандаша, линейки без делений и циркуля?
Складывать и вычитать отрезки просто. Пусть у нас есть отрезки длиной a и b . С помощью линейки мы продлеваем первый отрезок. Ставим иглу циркуля в начало второго отрезка, а острие карандаша на другой ножке циркуля – в конец отрезка. После этого мы перемещаем иглу в конец первого отрезка и отмечаем точку на продленной линии. Так мы находим сумму двух отрезков. Что касается вычитания, оно будет означать не приращение, а укорочение отрезков.
Читать дальшеИнтервал:
Закладка: