Авинаш Диксит - Стратегические игры
- Название:Стратегические игры
- Автор:
- Жанр:
- Издательство:Манн, Иванов и Фербер
- Год:2017
- Город:Москва
- ISBN:9785001008132
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Авинаш Диксит - Стратегические игры краткое содержание
Книга будет полезна как интересующимся математикой и ее применением в бизнесе и в жизни, так и тем, кто хочет развить стратегическое мышление и научиться принимать обоснованные решения.
Стратегические игры - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
a) Не выполняя никаких математических вычислений, максимально подробно опишите, что произошло бы в случае полуразделяющего равновесия в данной игре.
b) Существует два возможных типа объединяющих исходов в данной игре. Не выполняя никаких математических вычислений, как можно подробнее опишите, как бы выглядели эти исходы.
c) А теперь предлагаем выполнить некоторые математические вычисления. Найдите множество возможных значений N, при которых вы достигли бы своей цели — отличить блестящих профессоров от просто хороших.
U5.Вернитесь к задаче с компаниями Tudor и Fordor из раздела 6.В, где низкий уровень затрат Tudor на единицу продукции составляет 10. Пусть z — вероятность того, что в Tudor действительно низкие издержки на единицу продукции.
a) Перепишите таблицу на рис. 8.10 с учетом значения z .
b) Сколько равновесий в чистых стратегиях существует при z = 0? Какой тип равновесия (разделяющее, объединяющее или полуразделяющее) наблюдается при z = 0? Обоснуйте свой ответ.
c) Сколько равновесий в чистых стратегиях существует при z = 1? Какой тип равновесия (разделяющее, объединяющее или полуразделяющее) наблюдается при z = 1? Обоснуйте свой ответ.
d) При каком минимальном значении z существует объединяющее равновесие?
e) Объясните на интуитивном уровне, почему объединяющее равновесие не может существовать при слишком низком значении z .
U6.Предположим, компания Tudor не расположена к риску и в ее случае полезность равна квадратному корню из общей прибыли (см. упражнение S6), а компания Fordor нейтральна к риску. Кроме того, допустим, что низкий уровень издержек Tudor на единицу продукции составляет 10, как в разделе 6.В.
a) Представьте игру в экстенсивной форме (как показано на рис. 8.9), указав соответствующие выигрыши для компании Tudor, не расположенной к риску.
b) Пусть вероятность z того, что Tudor — компания с низким уровнем издержек, составляет 0,4. Будет ли равновесие в такой игре разделяющим, объединяющим или полуразделяющим? (Подсказка: используйте таблицу, эквивалентную представленной на рис. 8.10.)
c) Выполните задание пункта а при z = 0,1.
d) (дополнительное задание).Изменит ли нерасположенность Tudor к риску ответ, полученный в пункте d упражнения U5? Объясните, почему да или почему нет.
U7.Вернитесь к ситуации в упражнении S7, в которой компания Tudor нейтральна к риску, а ее низкий уровень издержек на единицу продукции составляет 6.
a) Составьте нормальную форму этой игры с учетом значения z , то есть вероятности того, что Tudor установит низкую цену.
b) Найдите равновесие игры при z = 0,1. Это разделяющее, объединяющее или полуразделяющее равновесие?
c) Выполните задание пункта b при z = 0,2,
d) Выполните задание пункта b при z = 0,3.
e) Сравните ответы, полученные в пунктах b, c и d, с ответом в пункте d упражнения U5. Когда низкий уровень издержек Tudor 6 вместо 10, можно ли достичь объединяющего равновесия при более низких значениях z ? Или для объединяющих равновесий требуются более высокие значения z ? Объясните на интуитивном уровне, почему это действительно так.
U8.Иногда корпоративные судебные споры могут выступать в качестве сигнальных игр. Вот один пример. В 2003 году компания AT&T подала иск против компании eBay, утверждая, что ее электронные платежные системы Billpoint и PayPal нарушают оформленный в 1994 году патент AT&T на «посредничество в проведении транзакций с помощью системы связи».
Проанализируем эту ситуацию с момента подачи иска. В ответ на этот иск, как и в случае большинства исков о нарушении патентных прав, eBay может предложить AT&T урегулировать ситуацию без обращения в суд. Если AT&T примет предложение eBay, судебного разбирательства не будет; если отклонит, результат определит суд.
Сумма убытков, заявленная AT&T, не подлежит огласке. Поэтому предположим, что AT&T подает иск на сумму 300 миллионов долларов. Кроме того, допустим, что, если дело дойдет до судебного разбирательства, обе стороны понесут судебные издержки (на оплату услуг адвокатов и консультантов) в размере 10 миллионов каждая.
Поскольку eBay действительно занимается бизнесом, связанным с обработкой электронных платежей, она наверняка больше AT&T знает о том, какова ее вероятность выиграть это дело в суде. Для простоты давайте исходить из того, что eBay точно известно, признают ли ее невиновной (н) или виновной (в) в нарушении патентных прав. С точки зрения AT&T, вероятность того, что eBay виновна (в) составляет 25 %, а невиновна (н) — 75 %.
Допустим, в распоряжении eBay есть два возможных действия: щедрое предложение об урегулировании претензий (Щ) в размере 200 миллионов долларов или скупое предложение об урегулировании претензий (С) в размере 20 миллионов долларов. Если eBay сделает щедрое предложение, AT&T примет его и тем самым избежит дорогостоящего судебного разбирательства. Если eBay сделает скупое предложение, то AT&T предстоит решить, принять его (П) и избежать судебного разбирательства или отклонить (О) и отправить дело в суд. Если в ходе судебного разбирательства компанию eBay признают виновной, помимо оплаты судебных издержек ей придется выплатить AT&T 300 миллионов долларов. Если eBay признают невиновной, она не должна AT&T ничего, зато AT&T придется оплатить все судебные издержки.
a) Представьте эту игру в экстенсивной форме (правильно обозначьте информационные множества).
b) У кого из участников игры есть стимул блефовать (другими словами, подавать ложный сигнал)? В чем будет состоять этот блеф? Объясните логику своих рассуждений.
c) Представьте игру в стратегической форме (составьте таблицу игры) Найдите в этой игре все равновесия Нэша. Вычислите ожидаемые выигрыши каждого игрока в случае равновесия.
U9.Вернемся к игре в упрощенный покер между Феликсом и Оскаром из упражнения S9. Каким должно быть соотношение королей и дам, чтобы игра была справедливой? Иными словами, какая доля королей сделает ожидаемый выигрыш равным нулю для обоих игроков?
U10.Феликсу и Оскару наскучила упрощенная версия покера, поэтому они решили сделать ее более интересной, добавив в игру третью карту — валет. Теперь помимо четырех королей и четырех дам в колоде есть еще и четыре валета. Все правила игры остаются прежними, за одним исключением — последствиями ситуации, когда Феликс делает ставку, а Оскар отвечает. При таком раскладе Феликс выигрывает банк, если у него есть король, оба игрока «сравнивают счет» и каждый получает свои деньги обратно, если у Феликса дама, и Оскар выигрывает банк, если эта карта — валет.
a) Представьте игру в экстенсивной форме (правильно обозначьте информационные множества).
Читать дальшеИнтервал:
Закладка: