Авинаш Диксит - Стратегические игры

Тут можно читать онлайн Авинаш Диксит - Стратегические игры - бесплатно полную версию книги (целиком) без сокращений. Жанр: Математика, издательство Манн, Иванов и Фербер, год 2017. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Стратегические игры
  • Автор:
  • Жанр:
  • Издательство:
    Манн, Иванов и Фербер
  • Год:
    2017
  • Город:
    Москва
  • ISBN:
    9785001008132
  • Рейтинг:
    3/5. Голосов: 11
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 60
    • 1
    • 2
    • 3
    • 4
    • 5

Авинаш Диксит - Стратегические игры краткое содержание

Стратегические игры - описание и краткое содержание, автор Авинаш Диксит, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Доступный учебник по теории игр, который завоевал заслуженную популярность благодаря наглядным примерам и упражнениям, а также доступному изложению, не требующему от читателей серьезной математической подготовки.
Книга будет полезна как интересующимся математикой и ее применением в бизнесе и в жизни, так и тем, кто хочет развить стратегическое мышление и научиться принимать обоснованные решения.

Стратегические игры - читать онлайн бесплатно полную версию (весь текст целиком)

Стратегические игры - читать книгу онлайн бесплатно, автор Авинаш Диксит
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

b) Сколько чистых стратегий у Феликса в этой игре? Объясните логику своих рассуждений.

c) Сколько чистых стратегий в этой игре у Оскара? Объясните логику своих рассуждений.

d) Представьте игру в стратегической форме. Это должна быть таблица ожидаемых выигрышей каждого игрока в случае той или иной пары стратегий.

e) Найдите единственное равновесие Нэша в чистых стратегиях в этой игре.

f) Можно ли назвать его объединяющим, разделяющим или полуразделяющим?

g) В случае равновесия чему равен ожидаемый выигрыш Феликса в этой игре? Действительно ли это честная игра?

U11.Рассмотрим модель сигнализирования на рынке труда (модель Спенса) со следующими уточнениями. Существуют два типа работников — 1 и 2. Производительность их труда определяется как функции уровня образования E:

W 1( E ) = E; W 2( E ) = 1,5 E .

Затраты на образование двух типов работников как функции уровня образования составляют

C 1( E ) = E 2/2; C 2( E ) = E 2/3.

Полезность каждого работника равна его доходу минус затраты на образование. Компании, которые пытаются их нанять, поддерживают совершенную конкуренцию на рынке труда.

a) Если информация о типах работников открыта для ознакомления (то есть поддается наблюдению и проверке), найдите выражения для уровней образования, доходов и полезности двух типов работников.

Теперь предположим, что тип работника — это его личная информация.

b) Убедитесь в том, что если в данной ситуации с асимметричностью информации будет предпринята попытка заключить контракты, то тип 2 не захочет получить контракт, предназначенный для типа 1, а тип 1 захочет получить контракт, предназначенный для типа 2; следовательно, «естественное» разделение типов не может преобладать.

c) Если оставить контракт для типа 1 как в пункте а, при каком диапазоне контрактов (пар «образование / заработная плата») для типа 2 может быть достигнуто разделение?

d) Какой, по вашему мнению, из всех возможных разделяющих контрактов получит приоритет?

e) Кто выиграет или проиграет из-за асимметричности информации? В какой степени?

U12.«Господин Робинсон фактически приходит к выводу, что бизнес-школы — это своего рода инструменты отсева: степень MBA есть не что иное, как профсоюзный билет для яппи. Но, пожалуй, самый важный факт о Стэнфордской школе бизнеса состоит в том, что весь серьезный отсев происходит еще до начала первого занятия. В стенах учебного заведения не проводится грязная работа по прополке сорняков. “Они не хотят тебя проваливать. Они хотят, чтобы после выпуска ты со временем разбогател и пожертвовал своей альма-матер кучу денег”. Однако здесь возникает вопрос: если компании перекладывают на приемную комиссию Стэнфордской школы бизнеса ответственность за подбор молодых менеджеров, почему бы им просто не заменить сотрудников своего отдела управления персоналом членами приемной комиссии Стэнфорда и исключить это фиктивное образование? Неужели сам факт выбрасывания больших денег и двух лет жизни демонстрирует ту приверженность бизнесу, которую работодатели находят столь привлекательной?» (Из рецензии Майкла Льюиса на книгу Питера Робинсона Snapshots from Hell: The Making of an MBA («С “Поляроидом” в аду: как получают MBA»), опубликованной в разделе «Книжное обозрение» газеты New York Times 8 мая 1994 года.) Какой ответ на вопрос Льюиса вы можете дать с учетом анализа стратегий в ситуациях с асимметрией информации?

U13 (дополнительное упражнение; необходимо ознакомиться с приложением).Налоговый инспектор анализирует последнюю налоговую декларацию Ванды (см. упражнение S10), в которой она сообщает, что у нее выдался плохой год. Предположим, Ванда применяет равновесную стратегию и налоговый инспектор это знает.

a) С помощью правила Байеса найдите вероятность того, что у Ванды был хороший год, при условии, что в налоговой декларации указано обратное.

b) Объясните, почему вероятность, полученная в пункте а, больше или меньше исходной вероятности хорошего года, составляющей 0,6.

U14 (дополнительное упражнение; необходимо ознакомиться с приложением).Вернитесь к упражнению S14. Предположим (вполне обоснованно), что вероятность поломки «лимона» повышается с увеличением пройденного пути. В частности, пусть q = m / ( m + 500), где m — длина пути в милях.

a) Найдите минимальное целое количество миль m , позволяющее предотвратить крах рынка «апельсинов». Другими словами, при каком минимальном значении m продавец «апельсина» готов его продать по рыночной цене на автомобили марки Citrus, успешно совершившие поездку? (Подсказка: не забудьте вычислить f уточ.и p уточ..

b) Какое минимальное целое количество миль m позволит добиться полного разделения действующих рынков сбыта «апельсинов» и «лимонов»? То есть при каком минимальном значении m владелец «лимона» так и не решится совершить такую поездку?

Приложение. Отношение к риску и теорема Байеса

1. Отношение к риску и ожидаемая полезность

В главе 2мы указали на трудности с использованием вероятностей для вычисления среднего или ожидаемого выигрыша игроков в той или иной игре. Рассмотрим игру, участники которой получают или теряют деньги; предположим, выигрыш в ней равен определенной сумме. Если вероятность не получить ничего составляет 75 %, а вероятность получить 100 долларов — 25 %, то ожидаемый выигрыш рассчитывается как взвешенное по вероятности среднее ; иными словами, он равен среднему значению различных выигрышей, рассчитанному с использованием вероятности в качестве веса. В данном случае мы имеем 0 долларов с вероятностью 75 %, что дает в среднем 0,75 × 0 = 0, и 100 долларов с вероятностью 25 %, что дает в среднем 0,25 × 100 = 25. Этот же выигрыш игрок получил бы в результате неслучайного исхода, гарантирующего ему 25 долларов каждый раз, когда он играет. Считается, что люди нейтральны по отношению к риску, если для них не имеет значения, что выбирать из различных вариантов с одинаковой денежной стоимостью, но разным уровнем риска. В нашем примере в одном варианте риск отсутствует (игрок получит 25 долларов в любом случае), тогда как другой вариант сопряжен с риском, обеспечивая 0 долларов с вероятностью 0,75 и 100 долларов с вероятностью 0,25, с тем же средним показателем 25 долларов. С другой стороны, есть люди, не расположенные к риску, то есть те, кто из двух вариантов с одинаковой средней денежной стоимостью выберет менее рискованный. В нашем примере они предпочли бы получить 25 долларов наверняка, чем сталкиваться с рискованной перспективой «100 долларов или ничего», и при наличии возможности выбора остановились бы на более безопасном варианте. Такая нерасположенность к риску встречается повсеместно, поэтому нам нужна теория принятия решений в условиях неопределенности, учитывающая этот факт.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Авинаш Диксит читать все книги автора по порядку

Авинаш Диксит - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Стратегические игры отзывы


Отзывы читателей о книге Стратегические игры, автор: Авинаш Диксит. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x