Авинаш Диксит - Стратегические игры
- Название:Стратегические игры
- Автор:
- Жанр:
- Издательство:Манн, Иванов и Фербер
- Год:2017
- Город:Москва
- ISBN:9785001008132
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Авинаш Диксит - Стратегические игры краткое содержание
Книга будет полезна как интересующимся математикой и ее применением в бизнесе и в жизни, так и тем, кто хочет развить стратегическое мышление и научиться принимать обоснованные решения.
Стратегические игры - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Наш ирригационный проект имеет две важные характеристики. Во-первых, его преимущества относятся к категории неисключаемых благ: человеку, который не внес вклад в его реализацию, нельзя помешать извлекать из него выгоду. Во-вторых, к категории неконкурентных благ: использование этих преимуществ одним человеком не мешает другому тоже ими пользоваться. Экономисты называют эти проекты чистым общественным благом; в качестве примера такого блага часто приводится национальная система обороны. Напротив, чистое частное благо — полностью исключаемое и конкурентное: тот, кто не платит за него, не может воспользоваться его преимуществами, а если такое благо получает один человек, больше к нему никто не имеет доступа. Буханка хлеба — хороший пример чистого частного блага. Большинство благ попадают в двумерный диапазон различных степеней исключаемости и конкурентности. Мы не будем углубляться в эту классификацию, но упомянули о ней, чтобы помочь вам соотнести наше обсуждение с тем, что вы можете встретить в других курсах и книгах [180].
А. Коллективное действие в контексте дилеммы заключенныхИздержки и преимущества, связанные со строительством оросительной системы, так же как издержки и преимущества всех коллективных действий, зависят от того, кто принимает участие в проекте. В свою очередь, относительный объем затрат и выгод определяет структуру игры, которая при этом ведется. Предположим, каждый из вас в одиночку мог бы завершить проект за 7 недель, тогда как при объединении усилий это потребовало бы от каждого всего по 4 недели. Кроме того, качество проекта с участием двух человек выше; от его реализации в одиночку фермер получает выгоду, эквивалентную 6 неделям работы, тогда как совместная реализация обеспечивает каждому выгоду, эквивалентную 8 неделям работы.
В более общем плане мы можем выразить преимущества и издержки в виде функций от количества участников игры. Таким образом, ваши издержки в связи с решением строить оросительную систему зависят от того, будете вы это делать в одиночку или с чьей-то помощью. Стало быть, издержки можно записать как C ( n ), где C зависит от количества игроков n , участвующих в реализации проекта. Тогда C (1) — это ваши расходы в связи со строительством оросительной системы только своими силами, C (2) — вместе с соседом. В данном примере C (1) = 7, а C (2) = 4. Аналогичным образом выгода ( B ) от готовой оросительной системы может зависеть от числа участников ( n ) ее строительства. В нашем примере B (1) = 6, а B (2) = 8. Обратите внимание, что, учитывая характер проекта, обеспечивающего создание социального блага, преимущества каждого фермера одинаковы, независимо от степени участия в его реализации.
В данной игре каждый фермер должен решить, участвовать ему в строительстве оросительной системы или нет, то есть попытаться уклониться. (Предполагается, что работу необходимо выполнить в сжатые сроки, и вы могли бы сделать вид, что вас в последнюю минуту отвлекли какие-то важные семейные дела; так же может поступить и ваш сосед.) На рис. 11.1 представлена таблица выигрышей в этой игре, исчисляемых в неделях работы. Значения выигрышей определены на основании разности между издержками и преимуществами, связанными с каждым действием. Таким образом, выигрыш при выборе стратегии «строить» составит B ( n ) — C ( n ) при n = 1, если вы реализуете проект в одиночку, и n = 2, если ваш сосед также выберет «строить». Выигрыш от применения стратегии «не строить» равен просто B (1), если ваш сосед сыграет «строить», поскольку в случае отказа от участия в проекте вы не несете никаких издержек.
Рис. 11.1.Коллективное действие в контексте дилеммы заключенных: версия I
Учитывая структуру выигрышей, представленную на рис. 11.1, ваш наилучший ответ в случае, если сосед откажется участвовать в проекте, — также отказаться: ваш выигрыш от реализации проекта в одиночку (6) меньше понесенных вами издержек (7), то есть ваш чистый выигрыш составит −1, тогда как отказ от участия в проекте обеспечит выигрыш 0. Аналогичным образом, если ваш сосед решит участвовать в проекте, вы сможете извлечь для себя выгоду (6) из его работы без всяких затрат со своей стороны; для вас это лучше, чем работать самому, чтобы получить более крупное преимущество от проекта с участием двух человек (8), но при этом понести издержки в связи с выполнением работы (4), что обеспечивает чистый выигрыш 4. Общее свойство этой игры состоит в том, что для вас лучше не участвовать в строительстве оросительной системы, что бы ни сделал ваш сосед; та же логика справедлива и в его случае. (В данном примере каждый фермер выступает в качестве безбилетника— человека, который перекладывает всю работу на соседа, а затем все равно пожинает ее плоды.) Таким образом, «не строить» — доминирующая стратегия каждого игрока. Однако совместная работа над проектом принесла бы обоим фермерам больше пользы (выигрыш 4), чем в случае отказа от его реализации (выигрыш 0). Следовательно, это игра категории «дилемма заключенных».
В ней мы видим одну из основных проблем, возникающих в играх с коллективным действием. Выбор, оптимальный для каждого игрока в отдельности (в данном случае — не принимать участия в строительстве независимо от решения соседа), может не быть оптимальным с точки зрения всей группы, даже если эта группа состоит из двух фермеров. Социальный оптимумв игре с коллективным действием достигается, если общая сумма выигрышей ее участников максимизируется. В данной дилемме заключенных социальный оптимум сводится к исходу «строить» / «строить». Однако поведение игроков в соответствии с равновесием Нэша не всегда обеспечивает социально оптимальный исход. Именно поэтому изучение игр с коллективным действием сфокусировано на методах улучшения наблюдаемого (как правило, соответствующего равновесию Нэша) поведения в целях обеспечения наиболее благоприятных для всего общества исходов. Как мы увидим, противоречие между такими исходами, как равновесие Нэша и социальный оптимум, присутствует во всех версиях игр с коллективным действием.
Теперь давайте проанализируем, как будет выглядеть эта игра, если слегка изменить показатели. Предположим, что выгоды от проекта с участием двух человек ненамного превышают выгоды от проекта с участием одного человека: 6,3 недели работы для каждого фермера. При этом каждый получит 6,3–4 = 2,3, если оба решат строить. Полученные в итоге выигрыши представлены в таблице на рис. 11.2. Эта игра по-прежнему остается дилеммой заключенных и приводит к равновесному исходу «не строить» / «не строить». Тем не менее, если оба фермера решают строить, их общий выигрыш составит всего 4,6. Социальный оптимум наблюдается в случае, когда один из них принимает участие в строительстве, а другой нет, что обеспечивает обоим выигрыш 6 + (–1) = 5. Есть два возможных способа получить такой исход, но тогда достижение социального оптимума поднимает новую проблему: кто должен реализовывать проект и получить выигрыш −1, если другой может выступить в роли «безбилетника» и иметь выигрыш 6?
Читать дальшеИнтервал:
Закладка: