Иэн Стюарт - Математические головоломки профессора Стюарта

Тут можно читать онлайн Иэн Стюарт - Математические головоломки профессора Стюарта - бесплатно ознакомительный отрывок. Жанр: Математика, издательство Альпина нон-фикшн, год 2017. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Математические головоломки профессора Стюарта
  • Автор:
  • Жанр:
  • Издательство:
    Альпина нон-фикшн
  • Год:
    2017
  • Город:
    Москва
  • ISBN:
    978-5-9614-4502-2
  • Рейтинг:
    5/5. Голосов: 11
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 100
    • 1
    • 2
    • 3
    • 4
    • 5

Иэн Стюарт - Математические головоломки профессора Стюарта краткое содержание

Математические головоломки профессора Стюарта - описание и краткое содержание, автор Иэн Стюарт, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Книга «Математические головоломки профессора Стюарта» известного математика и популяризатора математической науки Иэна Стюарта – сборник задач, головоломок и увлекательных историй. Повествование в книге основано на приключениях детектива-гения Хемлока Сомса и его верного друга, доктора Джона Ватсапа. Они ломают головы над решением задач с математической подоплекой.
Автор уделяет внимание математическим датам, загадкам простых чисел, теоремам, статистике и множеству других интересных вопросов. Эта умная, веселая книга демонстрирует красоту математики. Из книги читатель узнает о форме апельсиновой кожуры, евклидовых каракулях, блинных числах, о гипотезе квадратного колышка и других решенных и нерешенных задачах. Книга будет интересна всем, кто не равнодушен к загадкам, любит математику и решение головоломок.

Математические головоломки профессора Стюарта - читать онлайн бесплатно ознакомительный отрывок

Математические головоломки профессора Стюарта - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Иэн Стюарт
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать
Гипотеза Лемуана, или гипотеза Леви

Все нечетные целые числа, большие 5, могут быть представлены как сумма нечетного простого числа и удвоенного простого числа (Émile Lemoine, 1894, Hyman Levy, 1963).

Д. Корбитт подтвердил эту гипотезу вплоть до 10 9.

Гипотезы Мерсенна

В 1644 г. Марен Мерсенн объявил, что числа 2 n – 1 являются простыми для n = 2, 3, 5, 7, 13, 17, 19, 31, 67, 127 и 257 и составными для всех остальных положительных целых n <257. Позже было показано, что Мерсенн допустил пять ошибок: n = 67 и 257 дают составные числа, а n = 61, 89, 107 дают простые. Гипотеза Мерсенна привела к созданию новой гипотезы Мерсенна и гипотезы Ленстры – Померанца – Вагстаффа, которые значатся в нашем перечне следующими.

Новая гипотеза Мерсенна, или гипотеза Бейтмана– Селфриджа – Вагстаффа

Для любого нечетного p если выполняются любые два из следующих условий, то выполняется и третье:

1. p = 2 k ± 1 или p = 4 k ± 3 для некоторого натурального числа k ;

2. число 2 p− 1 – простое (простое Мерсенна);

3. число (2 p + 1)/3 – простое (простое Вагстаффа).

(Paul Bateman, John Selfridge and Samuel Wagstaff Jr., 1989)

Гипотеза Ленстры – Померанца – Вагстаффа

Существует бесконечное число простых Мерсенна, причем число простых Мерсенна, меньших x , приблизительно равно eγ ln ln x /ln 2, где γ – постоянная Эйлера, приблизительно равная 0,577 (Hendrik Lenstra, Carl Pomerance and Samuel Wagstaff Jr., не опубликовано).

Гипотеза Опперманна

Для любого целого числа n >1 существует по крайней мере одно простое число между n ( n – 1) и n ² и по крайней мере еще одно простое число между n ² и n ( n + 1) (Ludvig Henrik Ferdinand Oppermann, 1882).

Гипотеза Полиньяка

Для любого положительного четного n существует бесконечное число пар последовательных простых чисел с разницей в n (Alphonsede Polignac, 1849).

Для n = 2 это утверждение соответствует гипотезе о простых числах-близнецах (см. ниже). Для n = 4 она означает, что существует бесконечно много пар «двоюродных простых чисел» ( p, p + 4). Для n = 6 она означает, что существует бесконечно много пар простых чисел ( p, p + 6), известных как sexy (от латинского названия числа 6); при этом между числами p и p + 6 простых чисел нет.

Гипотеза Редмонда – Суня

Всякий интервал [ x m, y n ] (то есть любое множество чисел от x m до y n ) содержит по крайней мере одно простое число, за исключением [2³, 3²], [5², 3³], [2 5, 6²], [11², 5³], [3 7, 13³], [5 5, 56²], [181², 21 5], [43³, 282²], [46³, 312²], [22434², 55 5] (Stephen Redmond and Zhi-Wei Sun, 2006).

Эта гипотеза подтверждена для всех интервалов [ x m, y n ] до 10¹².

Вторая гипотеза Харди – Литтлвуда

Если π ( x ) есть число простых чисел вплоть до x , включая x , то π ( x + y ) ≤ π ( x ) + π ( y ) для x, y ≥ 2 (Godfry Harold Hardy and John Littlewood, 1923).

Существуют технические соображения, согласно которым можно ожидать, что это предположение окажется ложным, но первое нарушение возникнет, скорее всего, при очень больших величинах x , вероятно, больших, чем 1,5 × 10 174, но меньших, чем 2,2 × 10 1198.

Гипотеза о простых числах-близнецах

Существует бесконечно много простых чисел p , таких, что число p + 2 тоже простое.

25 декабря 2011 г. PrimeGrid – «проект распределенных вычислений», в котором используются свободные ресурсы на компьютерах добровольцев, пожелавших принять в нем участие, объявил наибольшую известную на сегодняшний день пару простых чисел-близнецов:

3 756 801 695 685 × 2 666 669± 1.

Каждое из этих чисел содержит 200 700 знаков.

В интервале до 10 18содержится 808 675 888 577 436 пар простых чисел-близнецов.

Оптимальная пирамида

Стоит подумать о Древнем Египте, и в голову сразу же приходят пирамиды, в первую очередь Великая пирамида Хеопса в Гизе, самая большая из всех, и стоящая рядом с ней пирамида Хефрена, чуть поменьше, и относительно небольшая пирамида Микерина. Известны остатки более чем 36 крупных и сотен более мелких египетских пирамид – от громадных и почти полностью сохранившихся до простых отверстий в земле, содержащих лишь несколько обломков камня от погребальной камеры, а иногда и того меньше.

О форме размерах и ориентации пирамид написаны огромные тома Большая часть их - фото 68

О форме, размерах и ориентации пирамид написаны огромные тома. Большая часть их содержимого умозрительна; на основе различных численных соотношений выстраиваются весьма амбициозные цепочки рассуждений. Особенно любят исследователи Великую пирамиду: с чем только ее ни связывали – и с золотым сечением, и с числом π, и даже со скоростью света. К подобным рассуждениям возникает столько вопросов, что трудно воспринимать их серьезно: в любом случае данные, на которых они основаны, часто неточны; к тому же с таким количеством измерений и параметров всегда можно подобрать нужную комбинацию.

Один из лучших источников по пирамидам – книга The Complete Pyramids Марка Ленера. Помимо прочего в ней можно найти данные о наклоне граней пирамид: углы между плоскостями, проходящими через треугольные грани, и квадратным основанием пирамиды. Вот несколько примеров:

Более обширные данные вы можете найти на сайте - фото 69

Более обширные данные вы можете найти на сайте http://ru.wikipedia.org/wiki/Список_египетских_пирамид

На ум приходят два наблюдения. Первое состоит в том, что приводить некоторые из этих углов с точностью до угловой секунды (а остальные до минуты) неразумно. Сторона основания Черной пирамиды Аменемхета III в Дашуре составляет 105 м, а высота – 75 м. Изменение угла наклона грани пирамиды на одну угловую секунду соответствует изменению высоты пирамиды на один миллиметр. Правда, следы ребер основания сохранились, как и некоторые фрагменты камней облицовки, но, учитывая общую степень сохранности пирамиды, вам трудно было бы оценить первоначальный наклон ее граней в пределах хотя бы 5° от истинной величины.

Второе на что невольно обращаешь внимание это тот факт что хотя наклон - фото 70

Второе, на что невольно обращаешь внимание, – это тот факт, что, хотя наклон граней пирамид немного варьируется (иногда даже в пределах одной пирамиды, как, к примеру, у Ломаной), у всех этих древних сооружений он близок к 54°. Почему?

В 1979 г. Р. Макмиллан [17] R.H. Macmillan, Pyramids and pavements: some thoughts from Cairo, Mathematical Gazette 63 (December 1979) 251–255. начал с того надежно установленного факта, что строители пирамид использовали для отделки своих сооружений с внешней стороны дорогостоящий облицовочный камень, к примеру белый турский известняк или гранит. Внутри они использовали более дешевые материалы: низкокачественный мокаттамский известняк, саманный кирпич и щебенку. Поэтому для них имело смысл всячески снижать количество каменной облицовки. Какой формы должна быть пирамида, если фараон желает, чтобы при заданной стоимости облицовочного камня монумент получился как можно больше? То есть какой угол наклона граней пирамиды к основанию позволяет получить максимальный объем при фиксированной суммарной площади четырех треугольных граней?

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Иэн Стюарт читать все книги автора по порядку

Иэн Стюарт - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Математические головоломки профессора Стюарта отзывы


Отзывы читателей о книге Математические головоломки профессора Стюарта, автор: Иэн Стюарт. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x