Юрий Красков - Чудеса арифметики от Пьера Симона де Ферма
- Название:Чудеса арифметики от Пьера Симона де Ферма
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:2021
- ISBN:978-5-532-98628-2
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Юрий Красков - Чудеса арифметики от Пьера Симона де Ферма краткое содержание
Чудеса арифметики от Пьера Симона де Ферма - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Рис. 12. Эндрю Вайлс

Тем не менее эта суперсенсационная новость с большой помпой отмечалась в ведущих мировых СМИ. Самая влиятельная газета США «Нью-Йорк Таймс» сообщила об этом прямо на титульной полосе … на целых 2 года раньше появления самого «доказательства»!!! Эндрю Вайлс как автор «доказательства» стал членом Французской академии наук и лауреатом аж 18-ти самых престижных премий!!! Для освещения этого знаменательного события британская телекомпания BBC выпустила восторженный фильм, а также был приглашён писатель Саймон Сингх (Simon Singh), опубликовавший в 1997 году книгу под названием «Великая теорема Ферма. История загадки, которая занимала величайшие умы мира на протяжении 358 лет».
Рис. 13. Герхард Фрай

Если бы Сингх самостоятельно готовил эту книгу, то у него возникло бы столько вопросов, что он и за 20 лет бы не справился. Конечно же, ему всеми силами помогали те самые герои профессора, прославляемые в фильме BBC, потому-то книга удалась на славу и действительно читать её очень интересно даже тем, кто знает о математике только понаслышке. Первое, что сразу бросается в глаза, так это то, что в книге допущена арифметическая ошибка (!), причём не где-нибудь, а в самом её названии! Ведь хорошо известно, что «величайшие умы» ничего не могли знать о ВТФ до 1670 г., когда её формулировка впервые появилась в книге, изданной сыном Ферма Клеманом Самюэлем, «Арифметика» Диофанта с комментариями К. Баше и замечаниями П. Ферма 8 8 Если бы эта книга была опубликована при жизни Ферма, то его просто порвали бы на куски, т.к. в своих 48 замечаниях он не дал доказательства ни одной из своих теорем. Но в 1670 г. т.е. через 5 лет после его смерти расправляться было не с кем и маститым математикам пришлось самим искать решения предложенных им задач. С этим как-то уж совсем не задалось и, конечно, многие из них не могли простить Ферма такой дерзости. Не забылось и то, что ещё при жизни он дважды устраивал вызовы английским математикам, с которыми те явно не справились, несмотря на его великодушное признание их достойными соперниками в письмах, полученных ими от Ферма. Только через 68 лет после первой публикации «Арифметики» Диофанта с замечаниями Ферма ситуация, наконец-то, сдвинулось с мёртвой точки, когда величайший гений науки Леонард Эйлер доказал частный случай ВТФ для n=4, применив метод спуска в точном соответствии с рекомендациями Ферма (см. Приложение II). Позже, благодаря Эйлеру, получили решения и другие задачи, а вот ВТФ так никому и не покорилась.
(см. Приложение VI рис. 96). Но тогда должно быть не 358, а 325 лет, и выходит, что Сингх просто не заметил ошибку?
Однако не спешите с выводами! Эта ошибка не автора книги и вовсе не случайна. Те же самые профессора наперебой рассказывали Сингху о том, что якобы ещё в 1637 г. 9 9 В пункте 2-30 письма Ферма к Мерсенну ставится задача: « Найти два квадрато-квадрата, сумма которых равна квадрато-квадрату, или два куба, сумма которых есть куб » [9, 36]. Датировка этого письма в издании Таннери вызывает сомнения, т.к. оно было написано после писем с более поздней датировкой. Поэтому вероятнее всего оно было написано в 1638 г. Отсюда делается вывод, что ВТФ появилась в 1637 году??? Но разве у ВТФ такая формулировка? Даже если эти две задачи есть частные случаи ВТФ, то как же можно приписывать Ферма то, о чём в то время он вряд ли мог даже догадываться? Кроме того, на неразрешимость задачи о разложении куба на сумму двух кубов впервые указал арабский математик Абу Мухаммед аль Худжанди ещё в X столетии [36]. А вот неразрешимость такой же задачи с биквадратами является следствием решения задачи из пункта 2-10 того же письма: « Найти прямоугольный треугольник в числах, площадь которого равнялась бы квадрату ». Способ доказательства Ферма даёт в своем 45-м замечании к «Арифметике» Диофанта, которое начинается так: « Если бы площадь треугольника была квадратом, то были бы даны два квадрато-квадрата, разность которых была бы квадратом ». Таким образом, в то время постановка этой задачи и подход к её решению сильно отличались даже от частного случая ВТФ.
Ферма и сам обнаружил ошибку в своём доказательстве, но просто забыл вычеркнуть эту теорему в записях на полях книги. Кто придумал эту небылицу неизвестно, но многие учёные воспринимали её как известный факт и повторяли раз за разом в своих работах. Понять их можно, ведь иначе получалось, что Ферма оказался умнее их всех! Когда Эндрю Вайлс заявил ( https://www.pbs.org/wgbh/nova/article/andrew-wiles-fermat/): «Я не верю, что у Ферма было доказательство», то это мнение было вовсе и не ново, т.к. об этом много раз твердили многие очень авторитетные учёные. Однако это же явно противоречит логике. Получается, что Ферма каким-то невероятным образом умудрился сформулировать совсем не очевидную теорему, не имея на то вообще никаких оснований 10 10 Чтобы сомнений не возникало, были предприняты попытки как-то «обосновать» то, что у Ферма не могло быть доказательства, упоминаемого в оригинальном тексте ВТФ. См. например, https://cs.uwaterloo.ca/~alopez-o/math-faq/node26.html (Did Fermat prove this theorem?). Подобная «аргументация» никому из здравомыслящих людей, имеющих отношение к науке, и в голову не придёт, т.к. это даже в принципе не может быть убедительно. Ведь таким способом можно приписать Ферма любую галиматью. Но инициаторы подобных вбросов явно не учли, что это и есть свидетельство организованной и срежиссированной информационной кампании со стороны тех, кто был заинтересован в продвижении «доказательства» Вайлса.
.
Другое противоречие в книге Сингха – это явное несоответствие между документальными фактами и оценками консультантов личности Ферма как учёного. Нужно отдать должное Сингху в том, что он добросовестно, (хотя и не полно), изложил ту часть творчества Ферма, которая относится к его вкладу в науку и подтверждается документально. Особенно следует отметить то, что в его книге арифметика названа «самой фундаментальной из всех математических дисциплин». Одного только перечисления достижений Ферма в науке вполне достаточно, чтобы не сомневаться, что учёных такого уровня за всю историю науки было считанные единицы.
Но если это так, то зачем же нужно было додумывать то, что никакими фактами не подтверждается и лишь искажает реальную картину? Уж очень это похоже на стремление убедить всех в том, что Ферма не мог доказать ВТФ, поскольку это якобы подтверждается историками. Но историки получали сведения от тех самых математиков, которые не справились с задачами Ферма и могли таким вот образом выражать своё недовольство. Вот так и появляются всякие взятые ниоткуда рассуждения о том, что Ферма был учёным-любителем, арифметика привлекала его лишь головоломками, которые он «придумывал», ВТФ он тоже «придумал», глядя на уравнение Пифагора, а свои доказательства он не желал публиковать из-за опасений критики коллег.
Читать дальшеИнтервал:
Закладка: