Юрий Красков - Чудеса арифметики от Пьера Симона де Ферма
- Название:Чудеса арифметики от Пьера Симона де Ферма
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:2021
- ISBN:978-5-532-98628-2
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Юрий Красков - Чудеса арифметики от Пьера Симона де Ферма краткое содержание
Чудеса арифметики от Пьера Симона де Ферма - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Не преминули они также ехидно указать на то, что о Ферма никто бы так и не узнал, если бы его задачами не заинтересовался величайший математик всех времен и народов Леонард Эйлер (Leonhard Euler). Но как раз это магическое имя и сыграло с ними злую шутку. Их безграничная вера в новаторские изыскания Эйлера была слишком слепой, чтобы заметить, что именно благодаря ему, наука получила такой мощный удар, от которого она не может оправиться до сих пор!
Математики не просто поверили Эйлеру, но и горячо поддержали его в том, что алгебра – это самая главная математическая наука, а вот арифметика является лишь одним из её элементарных разделов 14 14 Любопытно, что русскоязычное издание фундаментального труда Эйлера вышло в 1768 г. под названием «Универсальная арифметика», хотя оригинальное название «Vollständige Anleitung zur Algebra» должно переводиться как «Полное руководство по алгебре». Видимо, переводчики, (студенты Петр Иноходцев и Иван Юдин), резонно полагали, что уравнения исследуются здесь главным образом с точки зрения их решений в целых или рациональных числах, т.е. методами арифметики. Для сегодняшнего читателя это 2-х томное издание представляется как китайская грамота, поскольку вместе с сильно устаревшим русским языком и орфографией здесь просто неимоверное количество опечаток. Вряд ли сегодняшняя РАН как наследница «Императорской академии наук», издавшей этот труд, понимает его истинную ценность, иначе он давно был бы переиздан в современном и общедоступном виде.
. Задумка Эйлера была действительно превосходной, поскольку его алгебра, получившая новые возможности за счёт использования «комплексных чисел», должна была стать мощнейшим научным прорывом, который позволил бы не только расширить диапазон чисел от числовой оси до числовой плоскости, но и бóльшую часть всех вычислений сводить к решению алгебраических уравнений 15 15 Здесь есть аналогия между алгеброй и аналитической геометрией Декарта и Ферма, которая выглядит более универсальной по сравнению с геометрией Евклида. Тем не менее, арифметика и геометрия Евклида являются фундаментами, на которых только и могут появиться алгебра и аналитическая геометрия. В этом смысле идея Эйлера рассматривать все вычисления сквозь призму алгебры заведомо ущербна. Но его логика была совсем иной. Он понимал, что если наука будет развиваться только путём увеличения разновидностей уравнений, которые она способна решать, то рано или поздно она зайдет в тупик. И в этом смысле его исследования представляли для науки огромную ценность. Другое дело, что их алгебраическая форма была воспринята как магистральный путь развития и это привело в дальнейшем к разрушительным последствиям.
.
Рис. 16. Леонард Эйлер

Необходимость «комплексных чисел» математики объясняют очень даже просто. Чтобы решать абсолютно любые алгебраические уравнения нужно, (всего-то лишь!), сделать так, чтобы уравнение x 2+1 = 0 стало разрешимым 16 16 Здесь-то и возникает понятие «числовой плоскости», где по оси x располагаются действительные числа, а по оси y мнимые, т.е. те же действительные, только умноженные на «число» i= √-1. Но тогда между этими осями получается противоречие – на действительной оси множитель 1 n является нейтральным, а на мнимой оси множитель i n нет, а это не согласуется с базовыми свойствами чисел. Если уж вводится число i, то оно должно присутствовать на обеих осях, но тогда нет никакого смысла введения второй оси. Вот и выходит, что с точки зрения базовых свойств чисел эфемерное создание в виде числовой плоскости – полная бессмыслица.
. По-русски его можно назвать «Не пришей кобыле хвост!». Это уравнение совсем не безобидно, т.к. с практическими задачами оно никак не связано, а основы науки подрывает очень даже существенно. Тем не менее, дьявольское искушение на пустом месте создать нечто очень эффектное и грандиозное оказалось сильнее здравого смысла, и Эйлер решил продемонстрировать новые математические возможности на практике.
ВТФ, которую Эйлеру никак не удавалось доказать, отлично подходила бы для демонстрации возможностей новой чудо алгебры. Однако результат получился более чем скромным – вместо общего доказательства ВТФ удалось доказать только один частный случай для 3-й степени [8, 30]. Более амбициозно выглядело доказательство другой теоремы Ферма о единственном решении в целых числах уравнения y 3=x 2+2 [36]. Ведь это была задача ох какая трудная и её, как и ВТФ, в то время никто из математиков не мог решить. Несмотря на то, что сама возможность разрешимости любого алгебраического уравнения ещё не была доказана, эти демонстрации Эйлера были восприняты на ура. Оставалось лишь найти решение проблемы под названием «Основная теорема алгебры». С этой задачей блестяще справился в 1799 г. настоящий титан науки Карл Гаусс (Carl Gauß), который представил доказательство аж 4-мя разными способами!
Научное сообщество встретило все эти «достижения» бурными овациями. А как радовался нечестивый, так и не передать. Да уж, это надо же, как весь цивилизованный учёный мир загнал сам себя в тупик! Ведь очевидно, что для науки, которая на арифметику не опирается, никаких разумных ограничений не существует и последствия будут печальными, а от доминирования алгебры арифметика станет настолько трудной, что острословы язвительно назовут её наукой для элитарных математиков, в которой они могут демонстрировать остроту своего ума!
Рис. 17. Карл Фридрих Гаусс

Но сами-то учёные, ничего не подозревающие и преисполненные самых что ни есть наилучших побуждений, продолжали продвигать науку вперёд к новым высотам, причём так усердно, что толи ненароком, толи по недоразумению взяли, да и потеряли «Золотую теорему Ферма» (ЗТФ)! А ведь это было одно из самых впечатляющих открытий Пьера Ферма в арифметике, которым он очень гордился.
Случилось так, что третий в истории королевский математик Жозеф Лагранж (Joseph Lagrange) вместе со своим предшественником, вторым королевским, (и первым императорским!), математиком Леонардом Эйлером, доказал в 1772 году лишь один частный случай ЗТФ для квадратов, чем прославился на весь мир. Это замечательное достижение науки получило название «Теорема Лагранжа о четырёх квадратах».
Наверное, это хорошо, что Лагранж два года не дожил до того момента, когда в 1815 г. совсем ещё молодой Огюстен Коши́ (Augustin Cauchy) представил своё общее доказательство ЗТФ для всех многоугольных чисел. Но тут вдруг произошло нечто ужасное, неизвестно откуда появился нечестивый и вставил свое фэ. И вот никакой тебе мировой славы, да ещё и полная обструкция со стороны коллег.
Читать дальшеИнтервал:
Закладка: