Юрий Красков - Чудеса арифметики от Пьера Симона де Ферма

Тут можно читать онлайн Юрий Красков - Чудеса арифметики от Пьера Симона де Ферма - бесплатно ознакомительный отрывок. Жанр: Математика, год 2021. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Чудеса арифметики от Пьера Симона де Ферма
  • Автор:
  • Жанр:
  • Издательство:
    неизвестно
  • Год:
    2021
  • ISBN:
    978-5-532-98628-2
  • Рейтинг:
    4/5. Голосов: 11
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Юрий Красков - Чудеса арифметики от Пьера Симона де Ферма краткое содержание

Чудеса арифметики от Пьера Симона де Ферма - описание и краткое содержание, автор Юрий Красков, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
В данной книге показано, как знаменитая научная проблема под названием «Великая теорема Ферма» позволяет раскрывать несостоятельность и недееспособность науки, в которой арифметика по разным историческим причинам лишилась статуса первоосновы всех знаний. Необычный жанр книги назван в ней самой "Научный блокбастер", что означает сочетание остросюжетного повествования в стиле художественной прозы с отдельными фрагментами чисто научного содержания.

Чудеса арифметики от Пьера Симона де Ферма - читать онлайн бесплатно ознакомительный отрывок

Чудеса арифметики от Пьера Симона де Ферма - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Юрий Красков
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Рис. 18. Жозеф Лагранж

И ничего уж тут не поделаешь ну не взлюбили академики Коши и тихим сапом - фото 24

И ничего уж тут не поделаешь, ну не взлюбили академики Коши и тихим сапом добились того, что это общее доказательство ЗТФ было проигнорировано и не попало в учебники. Также, как и доказательства Гаусса 1801 г. для треугольников и тех же квадратов никто не вспоминает, но вот зато в учебниках до сих пор по-прежнему и очень подробно излагается знаменитая теорема Лагранжа. Впрочем, после того как Google опубликовал факсимиле изданного во Франции доказательства Коши Золотой Теоремы Ферма [3] стало ясно, почему оно не было поддержано академиками (см. п. 3.4.2).

Тем временем, учёные всего мира, воодушевившись этими грандиозными подвижками, так воспрянули, что замахнулись аж на саму ВТФ! К ним присоединилась ещё и знаменитая женщина, очень известная среди учёных и математиков Мари́-Софи́ Жерме́н (Marie-Sophie Germain). Эта талантливая и амбициозная мадмуазель предложила изящный способ, который применили сразу два гиганта математической мысли Лежён Дирихле́ (Lejeune Dirichlet) и Адриен Лежа́ндр (Adrien Legendre), чтобы доказать… только один частный случай ВТФ для пятой степени.

Рис. 19. Огюстéн Коши́

Ещё один такой же гигант Габриэль Ламе Gabriel Lamé сумелтаки сделать - фото 25

Ещё один такой же гигант Габриэль Ламе́ (Gabriel Lamé), сумел-таки сделать почти невозможное и получить доказательство высшей трудности… другого частного случая ВТФ для седьмой степени. Таким образом, вся эта элитарная четвёрка представителей из высшего общества учёных сумела доказать аж целых два (!) частных случая ВТФ [6,38].

Рис. 20. Мари́-Софи́ Жерме́н

Рис 21 Лежён Дирихле Рис 22 Адриен Лежандр Этим результатом можно было - фото 26

Рис. 21. Лежён Дирихле́

Рис 22 Адриен Лежандр Этим результатом можно было гордиться поскольку даже - фото 27

Рис. 22. Адриен Лежа́ндр

Этим результатом можно было гордиться поскольку даже Эйлер также смог доказать - фото 28

Этим результатом можно было гордиться, поскольку даже Эйлер также смог доказать лишь два частных случая ВТФ для 3-ей и 4-ой степеней. В доказательстве для 4-ой степени он применил метод спуска, следуя в точности рекомендациям Ферма, (см. Приложение II). Этот случай особенно важен тем, что его доказательство действительно для всех чётных степеней, т.е. для получения общего доказательства ВТФ можно рассматривать только нечётные степени. Следует отметить, что именно Эйлер решил, (и даже существенно расширил!), почти все наиболее трудные задачи Ферма и если бы не он, то одно лишь имя Ферма могло бы вызывать у математиков настоящий озноб. Но только не у Софи́ Жермéн, которую совсем не устраивала ситуация с недоказанной ВТФ, и она даже отважилась предложить заняться этой задачей самому Гауссу! Но тот просто отмахнулся от неё, ответив, что ВТФ интересует его мало, а подобных утверждений, которые невозможно ни доказать, ни опровергнуть, можно найти сколько угодно.

Рис. 23. Габриэль Ламе́

Конечно Гаусс и сам был бы рад услужить этой даме но если бы он мог это - фото 29

Конечно, Гаусс и сам был бы рад услужить этой даме, но если бы он мог это сделать, то и уговаривать его было бы не нужно. Например, с помощью разработанной им «Арифметики вычетов», прообразом которой послужила «Малая теорема Ферма», было наглядно показано, как можно эффективно решать труднейшие задачи арифметики. В частности, только Гауссу удалось найти решение задачи Ферма о вычислении двух единственно возможных квадратов, сумма которых даёт заданное простое число типа 4n+1 [11, 25].

Характерная особенность Гаусса – это его неприязнь к сомнительным нововведениям. Например, вряд ли он мог бы представить себя создателем геометрии кривых пространств. Но когда он установил, что такая геометрия может иметь место и не содержать противоречий, то был этим очень озадачен. Он был уверен, что практического применения его находка иметь не может из-за отсутствия каких-либо реальных фактов, подтверждающих что-либо подобное, однако быстро нашёл хороший выход – просто помог опубликовать это открытие своему русскому коллеге Николаю Лобачевскому и сделал это так искусно, что никто даже не удивился, когда работу по неевклидовой геометрии российский профессор и ректор Казанского университета издал… в Берлине и на немецком языке! В будущем сомнения Гаусса подтвердились. Появились последователи и наводнили науку целой кучей подобных «открытий».

Несмотря на то, что своим доказательством «Основной теоремы алгебры» Гаусс поддержал Эйлера в продвижении его идеи применения «комплексных чисел», никаких других возможностей для подвижек в этом направлении он не обнаружил. Да и то, что продемонстрировал Эйлер, его также не впечатлило. Более того, даже современная наука ничего вразумительного по применению «комплексных чисел» предложить не может. Зато море всяческих «научных» трудов, исследований и учебников по этой теме явно неадекватно её истиной ценности. Гаусс как чувствовал, что с этими «числами» что-то неладно и добром это не кончится, потому в этом направлении и не работал.

Рис. 24. Эрнст Куммер

Гром грянул в 1847 году когда на заседании членов Французской академии наук - фото 30

Гром грянул в 1847 году, когда на заседании членов Французской академии наук Габриэль Ламе и Огюстен Коши сообщили, что их доказательства ВТФ уже готовы к рассмотрению на конкурсе. Однако, когда для выявления победителя уже можно было вскрыть полученные от них запечатанные конверты, всех опустил на грешную землю немецкий математик Эрнст Куммер (Ernst Kummer). В его письме сообщалось, что доказательство ВТФ на основе «комплексных чисел» невозможно, из-за неоднозначности их разложения на простые множители 17 17 Согласно основной теореме арифметики разложение любого натурального числа на простые множители всегда однозначно, например, 12=2×2×3, т.е. иными простыми множителями это число, как и любое другое, представить невозможно. Но для «комплексных чисел», в общем случае однозначность утрачивается, например, 12=(1+√–11)×(1+√–11)=(2+√–8)×(2+√–8). Фактически это означает крушение науки в самих ее основах. Однако общепринятых критериев, (в виде аксиом), того, что можно относить к числам, а что нет, как не было, так и нет до сих пор. .

Вот тебе на! Эти-то самые «комплексные числа» оказывается вовсе и не числа!!! И нет бы заметить, наконец, что после того, как из-под науки вышибли арифметику, она висит в воздухе, не имея никакой прочной основы. Да и ошибки великих в своих последствиях тоже экстремальны, и они начинают корёжить науку, да так, что она, вместо целостной системы знаний, создает кучу не связанных между собой фрагментов.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Юрий Красков читать все книги автора по порядку

Юрий Красков - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Чудеса арифметики от Пьера Симона де Ферма отзывы


Отзывы читателей о книге Чудеса арифметики от Пьера Симона де Ферма, автор: Юрий Красков. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x