Владимир Дьяконов - Maple 9.5/10 в математике, физике и образовании
- Название:Maple 9.5/10 в математике, физике и образовании
- Автор:
- Жанр:
- Издательство:СОЛОН-Пресс
- Год:2006
- Город:Москва
- ISBN:5-98003-258-4
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Владимир Дьяконов - Maple 9.5/10 в математике, физике и образовании краткое содержание
Книга является справочником и руководством пользователя по новейшим системам символьной (аналитической) математики — Maple 9.5 и Maple 10. Это признанные мировые лидеры в области аналитических вычислений, прошедшие серьезную сертификацию в этой области. Кратко описан интерфейс систем и подробно их обширные возможности в математике, физике и образовании. Особое внимание уделено технике практических вычислений и визуализации их результатов, а также решению дифференциальных уравнений различного типа. Описаны средства символьных и численных вычислений, графические и программные возможности систем, пакеты их расширения, маплеты и практика применения Maple в математических и физических расчетах. Прилагаемый CD-ROM содержит более 340 файлов с примерами вычислений. Для научно-технических работников, студентов и преподавателей университетов и вузов.
Maple 9.5/10 в математике, физике и образовании - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
> with(student): showtangent(sin(x), x = 1.7);
строят график синусоиды и касательной к ней в точке х=1.7.
Помимо производной, часто встречается понятие дифференциала
то есть произведения производной функции на приращение ее аргумента Δx→0.
Производная от производной f(x), то есть функция f''(x) называется производной второго порядка. Могут быть производные третьего, четвертого и так далее, словом производные высшего порядка. Все математические системы способны вычислять такие производные, как и первую производную f'(x) от функции f(x).
Довольно часто встречаются функции ряда переменных, например f(x, у, z, …) . В этом случае может идти речь о частных производных по переменным х, у , z , …. Например, частной производной по переменной х будет выражение:

Подобные выражения нетрудно составить и для частных производных по другим переменным. Можно считать, что при вычислении частной производной по какой то переменной остальные переменные рассматриваются просто как константы. Можно также говорить о частных дифференциалах. Полный дифференциал функции многих переменных можно определить как:

Системы символьной математики позволяют вычислять производные как символьной, так и в численной форме.
Выражение (4.1) показывает, что производная f'(x) может быть найдена путем вычисления предела, записанного в (4.1). Этот популярный у математиков метод получил название Δ -метода. В СКМ он используется редко, поскольку они имеют прямые операторы или функции для вычисления производных.
4.3.2. Функции дифференцирования diff и Diff
Для вычисления производных Maple имеет следующие основные функции:
diff(a, x1, х2, ..., xn)
diff(a, [x1, х2, ..., хn])
Diff(a, x1, х2, ..., xn)
Diff(a, [x1, х2, ..., xn])
Здесь а — дифференцируемое алгебраическое выражение, в частности, функция f(x1, х2, хn) ряда переменных, по которым производится дифференцирование. Функция Diff является инертной формой вычисляемой функции diff и может использоваться для естественного воспроизведения производных в документах.
Первая из этих функций (в вычисляемой и в инертной форме) вычисляет частные производные для выражения а по переменным х1, х2, …, хn. В простейшем случае diff(f(x),x) вычисляет первую производную функции f(x) по переменной х. При n, большем 1, вычисления производных выполняются рекурсивно, например, diff(f(x), х, у) эквивалентно diff(diff(f(x), х), у). Оператор $ можно использовать для вычисления производных высокого порядка. Для этого после имени соответствующей переменной ставится этот оператор и указывается порядок производной. Например, выражение diff(f(x),x$4) вычисляет производную 4-го порядка и эквивалентно записи diff(f(x),x,x,x,x). A diff(g(x,y),x$2,y$3) эквивалентно diff(g(x,y),x,x,y,y,y).
Примеры визуализации и вычисления производных (файл diff):
> restart;
> Diff(a*x^n,x)=diff(а*х^n,х);

> Diff(a*sin(b*x),x)=diff(a*sin(b*x),x);

> Diff([sin(x),х^n,ехр(a*x)], x)=diff([sin(x),x^n, exp(a*x)], x);

> Diff(а*х^n,x$3)=diff(а*х^n,x$3);

> Diff([х^2,х^3,х^n],x)=diff([х^2,х^3,х^n],x);

> simplify(%);

Как видно из приведенных примеров, функции вычисления производных могут использоваться с параметрами, заданными списками. Приведенные ниже примеры показывают эти возможности и иллюстрируют дифференцирование функции пользователя для двух переменных:
> restart;
> f(х,у):=cos(х)*у^3;
> Diff(f(х, y), x) = diff(f(x, y), x);

> Diff(f(x, у), y) = diff(f(x, у), y);

> Diff(f(x,y),x,y)=diff(f(x,у),x,y);

> Diff(f(x,y),x$4)=diff(f(x,y), x$4);

> Diff(f(х,у),y$2)=diff(f(х,у), у$2);

> Diff(f(х,у), х$4,у$4)=diff(f(х,у),х$3,у$2);

Получаемые в результате дифференцирования выражения могут входить в другие выражения. Можно задавать их как функции пользователя и строить графики производных.
4.3.3. Дифференциальный оператор D
Для создания функций с производными может также использоваться дифференциальный оператор D. Порою он позволяет создавать более компактные выражения, чем функции diff и Diff. Дифференциальный оператор можно записывать в следующих формах: D(f) или D[i](f), где параметр f — выражение или имя функции, i — положительное целое число, выражение или последовательность. Оператор D(f) просто вычисляет имя производной от f, поскольку в этой форме он эквивалентен unnaply(diff(f(x),x),x). В форме D(f)(x) этот оператор подобен diff(f(x),x).
Приведем примеры дифференцирования функций, заданных только именами, и функций с одним параметром (файл D):
> restart;
> D(cos^2);
> D(exp^2+cos^2+tan+GAMMA);
> D(sin)(x)=diff(sin(x), x);
> D[1](sin*cos);
Следующий пример показывает дифференцирование функции пользователя fun с применением дифференциального оператора D и функции diff:
> fun:=(x)->sin(x^2);
> D(fun)=diff(fun(x),x);
Дифференциальный оператор можно применять и для дифференцирования функций нескольких переменных по заданной переменной (файл D):
> f := (х, у, z)->х*ехр(у)+ln(z);
> D[1](f);
> D[2](f);
> D[3](f);
Пример применения дифференциального оператора для функции f, заданной программным объектом-процедурой, представлен ниже:
Читать дальшеИнтервал:
Закладка: