Владимир Дьяконов - Maple 9.5/10 в математике, физике и образовании

Тут можно читать онлайн Владимир Дьяконов - Maple 9.5/10 в математике, физике и образовании - бесплатно ознакомительный отрывок. Жанр: Математика, издательство СОЛОН-Пресс, год 2006. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Maple 9.5/10 в математике, физике и образовании
  • Автор:
  • Жанр:
  • Издательство:
    СОЛОН-Пресс
  • Год:
    2006
  • Город:
    Москва
  • ISBN:
    5-98003-258-4
  • Рейтинг:
    3.67/5. Голосов: 91
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Владимир Дьяконов - Maple 9.5/10 в математике, физике и образовании краткое содержание

Maple 9.5/10 в математике, физике и образовании - описание и краткое содержание, автор Владимир Дьяконов, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

Книга является справочником и руководством пользователя по новейшим системам символьной (аналитической) математики — Maple 9.5 и Maple 10. Это признанные мировые лидеры в области аналитических вычислений, прошедшие серьезную сертификацию в этой области. Кратко описан интерфейс систем и подробно их обширные возможности в математике, физике и образовании. Особое внимание уделено технике практических вычислений и визуализации их результатов, а также решению дифференциальных уравнений различного типа. Описаны средства символьных и численных вычислений, графические и программные возможности систем, пакеты их расширения, маплеты и практика применения Maple в математических и физических расчетах. Прилагаемый CD-ROM содержит более 340 файлов с примерами вычислений. Для научно-технических работников, студентов и преподавателей университетов и вузов.

Maple 9.5/10 в математике, физике и образовании - читать онлайн бесплатно ознакомительный отрывок

Maple 9.5/10 в математике, физике и образовании - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Владимир Дьяконов
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Нетрудно заметить, что это окно практически аналогично окну для демонстрации методов пошагового дифференцирования, описанному в разделе 4.3.4 (рис. 4.2). В связи с этим подробное описание средств этого инструмента можно опустить. Отметим лишь, что он позволяет задавать подынтегральную функцию и пределы интегрирования и по шагам (автоматически или вручную) вычислять интегралы. По окончании работы с окном соответствующий интеграл и результат его вычисления появляется в окне документа — рис. 4.12.

Рис 412 Пример вывода результата работы с Mapletинструментом по методам - фото 344

Рис. 4.12. Пример вывода результата работы с Maplet-инструментом по методам интегрирования

4.4.13. Численное вычисление определенных интегралов

Для численного вычисления определенных интегралов используется функция evalf в сочетании с функциями Int или int:

evalf(Int(f, x=a..b, …))

evalf(Int(f, a..b, …))

evalf(Int(f, list-of-equations, …))

evalf(Int(f, list-of-ranges, …))

evalf(int(f, x=a..b))

Вместо многоточия могут использоваться различные опции, например, для задания метода вычислений. Могут использоваться комбинированные методы (аналитический с численным), ряд Maple-методов повышенной точности, методы предложенные группой NAG, метод Монте-Карло и др. Детали задания методов можно найти в справке. Ограничимся несколькими примерами вычисления определенных интегралов в численном виде (файл intnum):

> Int(х^2,х=1..2)=evalf(Int(х^2,х=1..2));

Maple 9510 в математике физике и образовании - изображение 345

> Int(sin(x)/x,х=0..Pi)=evalf(int(sin(х)/х,х=0..Pi));

Digits15Intsinxxx0Pievalfintsinxx x0Pi method - фото 346

> Digits:=15;Int(sin(x)/x,x=0..Pi)=evalf(int(sin(x)/x, x=0..Pi, method = _NCrule));

Digits := 15
expr xexpx Intexpr x1infinity evalf40Intexpr - фото 347

> expr := x*exp(-x):

Int(expr, x=1..infinity) = evalf[40](Int(expr, x=1..infinity, method=_Gquad));

В двух последних примерах показано вычисление интегралов с повышенной точностью - фото 348

В двух последних примерах показано вычисление интегралов с повышенной точностью в 15 и 40 верных знаков. Аналогичным образом могут вычисляться и кратные интегралы.

На время и возможность вычисления определенных интегралов большое значение оказывает выбранный метод вычислений. Нередко его стоит указывать явно. Ниже приведены примеры этого с оценкой времени интегрирования (файл intmet):

> restart: t:=time(): int((1-ехр(-z^2))/(BesselJ(1, z)^2+ BesselY(1,z)^2)/z^3,z=0.0..infinity); time()-t;

1.979213867
72.375

> t:=time(): evalf(Int((1-ехр(-z^2))/(BesselJ(1, z)^2+ BesselY(1,z)^2)/z^3,z=0..infinity, Gquad)); time()-t;

1.979213867
2.579

> t: =time(): evalf(Int((1-exp(-z^2))/(BesselJ(1, z)^2+ BesselY(1,z)^)/z^3,z=0.. infinity,_CCquad)); time()-t;

1.979213867
2.578

> t:=time(): evalf(Int((1-ехр(-z^2))/(BesselJ(1,z)^2+ BesselY(1,z)^2)/z^3,z=0..infinity,_Sinc)); time()-t;

1.979213867
3.876

> t:=time(): evalf(Int((1-ехр(-z^2))/(BesselJ(1, z)^2+ BesselY(1,z)^2)z^3,z=0..infinity,_Dexp)); time()-t;

1.979213867
1.531

В данном случае лучшим оказался метод _Dexp (адаптивный двойной экспоненциальный метода). Разумеется, для других интегралов более целесообразным может оказаться применение другого метода. Приведенные значения времен интегрирования могут заметно отличаться при реализации вычислений на разных ПК. Данные выше приведены для ПК с процессором Pentium 4 НТ с рабочей частотой 2,6 ГГц.

4.5. Вычисление пределов функций

4.5.1. Определение предела функции

Пределом функции f(х) называют то ее значение b, к которому функция неограниченно приближается в точке х=а (предел в точке) или слева или справа от нее. Пределы обозначается как:

Предел в точке a Предел слева от точки a Предел справа от точки а
Maple 9510 в математике физике и образовании - изображение 349 Maple 9510 в математике физике и образовании - изображение 350 Maple 9510 в математике физике и образовании - изображение 351

При этом подразумевается, что функция f(x) определена на некотором промежутке, включающем точку х=а и во всех точках, близких к ней слева и справа. В последнем случае предел вычисляется для х=а-h или x=a+h при h стремящемся к нулю. Пределом может быть число, математическое выражение и положительная или отрицательная бесконечность. Последнее соответствует расширенному представлению о пределах.

4.5.2. Функции вычисления пределов в Maple 9.5

Для вычисления пределов функции f в точке х=а используются следующие функции:

limit(f,x=a);

limit(f,x=a,dir);

Limit(f,x=a);

Limit(f,x=a,dir);

Здесь f — алгебраическое выражение, z — имя переменной, dir — параметр, указывающий на направление поиска предела (left — слева, right — справа, real — в области вещественных значений, complex — в области комплексных значений). Значением а может быть бесконечность (как положительная, так и отрицательная).

Примеры применения этих функций для вычисления пределов в точке приведены ниже (файл limit):

> restart: Limit(f(х),х=а);

Maple 9510 в математике физике и образовании - изображение 352

> Limit(1-ехр(-х), x=infinity)=limit(1-exp(-x), x=infinity);

Maple 9510 в математике физике и образовании - изображение 353

> Limit(exp(x),x=infinity) = limit(exp(x),x=infinity);

Maple 9510 в математике физике и образовании - изображение 354

> Limit(exp(-x),x=infinity)=limit(exp(-x),x=infinity);

Maple 9510 в математике физике и образовании - изображение 355

> Limit((x-sin(x))/x^3, x=0)=limit((x-sin(x))/х^3,х=0);

Maple 9510 в математике физике и образовании - изображение 356

> Limit((Pi-2*x)*tan(x),x=Pi/2)=limit(tan(x)*(Pi-2*x), x=Pi/2);

Обратите внимание на то что в первом примере фактически дано обозначение - фото 357

Обратите внимание на то, что в первом примере фактически дано обозначение предела в самом общем виде. Приведем еще пример вычисления предела функции в виде дроби, имеющей неопределенность 0/0:

> Limit((x-sin(х)) / (exp(2*х)-1-2*х-2*х^2),x=0) = limit((х-sin(x))/(exp(2*х)-1-2*х-2*х^2),х=0);

Как видно из этого примера Maple понимает особенности функций при вычислении - фото 358

Как видно из этого примера, Maple «понимает» особенности функций при вычислении пределов.

4.5.3. Вычисление пяти замечательных пределов

Проверим возможности Maple при вычислении пяти замечательных пределов (файл limit5 — второй предел дан в двух вариантах):

> Limit(sin(х)/х,х=0)=limit(sin(х)/х,х=0);

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Владимир Дьяконов читать все книги автора по порядку

Владимир Дьяконов - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Maple 9.5/10 в математике, физике и образовании отзывы


Отзывы читателей о книге Maple 9.5/10 в математике, физике и образовании, автор: Владимир Дьяконов. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x