Владимир Дьяконов - Maple 9.5/10 в математике, физике и образовании

Тут можно читать онлайн Владимир Дьяконов - Maple 9.5/10 в математике, физике и образовании - бесплатно ознакомительный отрывок. Жанр: Математика, издательство СОЛОН-Пресс, год 2006. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Maple 9.5/10 в математике, физике и образовании
  • Автор:
  • Жанр:
  • Издательство:
    СОЛОН-Пресс
  • Год:
    2006
  • Город:
    Москва
  • ISBN:
    5-98003-258-4
  • Рейтинг:
    3.67/5. Голосов: 91
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Владимир Дьяконов - Maple 9.5/10 в математике, физике и образовании краткое содержание

Maple 9.5/10 в математике, физике и образовании - описание и краткое содержание, автор Владимир Дьяконов, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

Книга является справочником и руководством пользователя по новейшим системам символьной (аналитической) математики — Maple 9.5 и Maple 10. Это признанные мировые лидеры в области аналитических вычислений, прошедшие серьезную сертификацию в этой области. Кратко описан интерфейс систем и подробно их обширные возможности в математике, физике и образовании. Особое внимание уделено технике практических вычислений и визуализации их результатов, а также решению дифференциальных уравнений различного типа. Описаны средства символьных и численных вычислений, графические и программные возможности систем, пакеты их расширения, маплеты и практика применения Maple в математических и физических расчетах. Прилагаемый CD-ROM содержит более 340 файлов с примерами вычислений. Для научно-технических работников, студентов и преподавателей университетов и вузов.

Maple 9.5/10 в математике, физике и образовании - читать онлайн бесплатно ознакомительный отрывок

Maple 9.5/10 в математике, физике и образовании - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Владимир Дьяконов
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

> taylor(1-ехр(х), х=1, 4);

convertpolynom taylorsinhx x 10 - фото 376

> convert(%,polynom);

taylorsinhx x 10 taylorintsinxxxx taylorerfхх - фото 377

> taylor(sinh(x), x, 10);

taylorintsinxxxx taylorerfхх Не все выражения - фото 378

> taylor(int(sin(x)/x,x),x);

taylorerfхх Не все выражения функции имеют разложение в ряд - фото 379

> taylor(erf(х),х);

Не все выражения функции имеют разложение в ряд Тейлора Ниже дан пример - фото 380

Не все выражения (функции) имеют разложение в ряд Тейлора. Ниже дан пример такого рода:

> taylor(1/х+х^2,х,5);

Error, does not have a taylor expansion, try series()

> series(1/х+х^2,x,10);

x -1+ x 2

> taylor(1/х+х^2,x=1,5);

2 + x-1 + 2(x-1) 2- (x-1) 3+ (x-1) 4+O((x-1) 5)

Здесь Maple 9.5 отказался от вычисления ряда Тейлора в окрестности точки х=0 (по умолчанию) и предложил воспользоваться функцией series. Однако эта функция просто повторяет исходное разложение. В то же время в окрестности точки х=1 ряд Тейлора вычисляется.

Для разложения в ряд Тейлора функций нескольких переменных используется библиотечная функция mtaylor:

mtaylor(f, v)

mtaylor(f, v, n)

mtaylor(f, v, n, w)

Здесь f — алгебраическое выражение, v — список имен или равенств, n — необязательное число, задающее порядок разложения, w — необязательный список целых чисел, задающих «вес» каждой из переменных списка v. Эта функция должна вызываться из библиотеки Maple 9 с помощью команды readlib:

> readlib(mtaylor); mtaylor(sin(х*у),[х,у],10,[2,1]);

proc()... end proc
x y - ⅙ x³ y³

> mtaylor(exp(-x)*sin(y),[x,y],5);

Для получения только коэффициента при k м члене ряда Тейлора можно - фото 381

Для получения только коэффициента при k- м члене ряда Тейлора можно использовать функцию coeftayl(expr,var,k). Если expr — функция нескольких переменных, то k должен задаваться списком порядков коэффициентов.

4.6.4. Пример документа — разложения синуса в ряд

Полезно сочетать разложение выражений (функций) в ряд Тейлора с графической визуализацией такого разложения. Рассмотрим документ, в котором наглядно показаны возможности представления функции рядами Тейлора и Маклорена.

На рис. 4.16 показана первая часть документа. Она дает пример разложения в ряд Тейлора функции sin(x) с построением ее графика и графика по разложению в ряд.

Рис 416 Разложение функции sinx в ряд Маклорена шестого порядка и - фото 382

Рис. 4.16. Разложение функции sin(x) в ряд Маклорена шестого порядка и построение ее графика

Поскольку выбрано разложение относительно точки х=0, то полученный ряд является рядом Маклорена. Это хороший пример визуализации результатов математических вычислений — здесь наглядно видно, что при малых значениях x график ряда практически повторяет разлагаемую функцию, но затем начинает сильно от нее отходить.

Обратите внимание на следующее — несмотря на то, что мы задали шестой порядок ряда, последний член имеет только пятый порядок. Это связано со спецификой данного разложения — в нем просто отсутствуют члены четного порядка.

Можно буквально в считанные секунды попробовать изменить число членов ряда или диапазон изменения переменной х, что и показано на рис. 4.17 (вторая часть документа). При этом легко убедиться в том, что при больших x поведение ряда не имеет ничего общего с поведением разлагаемой в ряд функции — в частности, нет и намека на периодичность разложения, которая присуща тригонометрической функции sin(x).

Рис 417 Разложение функции sinx в ряд Маклорена 12го порядка и построение - фото 383

Рис. 4.17. Разложение функции sin(x) в ряд Маклорена 12-го порядка и построение ее графика

В заключительной (третьей) части этого документа (рис. 4.18) представлено уже истинное разложение синуса в ряд Тейлора в окрестности смешенной от нуля точки х=1. При смещении точки, относительно которой ведется разложение, выражение для ряда Тейлора существенно изменяется. В нем, во-первых, появляются члены четных степеней, а во-вторых, фигурирует аргумент вида (х-1) n.

Рис 418 Разложение функции sinx в ряд Тейлора 12го порядка относительно - фото 384

Рис. 4.18. Разложение функции sin(x) в ряд Тейлора 12-го порядка относительно точки x=1 и построение ее графика

Нетрудно заметить, что даже при представлении такой «простой» функции, как sin(x), приемлемая погрешность представления одного периода достигается при числе членов ряда Тейлора порядка 10 и более. Однако существенное повышение порядка ряда нецелесообразно из-за резкого возрастания вычислительных погрешностей. Впрочем, если задать достаточно большое число верных цифр результатов, то в Maple можно использовать ряды с гораздо большим числом членов.

Кроме того, серьезным недостатком аппроксимации рядом Тейлора является непредсказуемое поведение полинома вдали от точки, относительно которой задается представление. Это хорошо видно на всех трех приведенных примерах.

Помимо указанных выше разложений в ряд Maple имеет множество функций для иных разложений. Например, в пакете numapprox имеется функция laurent(expr,var,n), позволяющая получить разложение в ряд Лорана, функция chebyshev(expr, eq/nm, eps) дает разложение в форме полиномов Чебышева и т.д.

4.6.5. Пакет вычисление степенных разложений powseries

Степенные разложения часто используются в математических расчетах для приближенного представления разнообразных функций и обеспечения единообразия такого представления. В пакете powseries сосредоточены расширенные средства по реализации таких разложений. Пакет загружается командой:

> with(powseries):

Ниже представлено определение функций этого пакета:

compose(a.b) — объединяет ряды а и b;

evalpow(expr) — вычисляет выражение expr и возвращает его в виде ряда;

inverse(p) — инвертирует ряд р;

multconst(p,const) — умножает ряд p на константу const;

multiply(a,b) — умножает ряд а на ряд b;

negative(p) — возвращает аддитивный обратный по отношению к р ряд;

powadd(a,b,…) — складывает ряды а, b, …;

powcreate(expr) — создает ряд для выражения expr;

powpoly(pol,var) — создает ряд для полинома pol по переменной var;

powsolve(sys) — создает ряд для решения дифференциальных уравнений sys;

quotient(a.b) — возвращает частное для а и b в виде ряда;

reversion(a) — дает обратное к композиции разложение ряда а;

subtract(a.b) — дает разность рядов а и b.

В выражении expr могут использоваться операторы +, -, *, / и ^. С ними могут комбинироваться встроенные функции и функции пользователя, например fig). Кроме того, могут использоваться следующие функции:

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Владимир Дьяконов читать все книги автора по порядку

Владимир Дьяконов - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Maple 9.5/10 в математике, физике и образовании отзывы


Отзывы читателей о книге Maple 9.5/10 в математике, физике и образовании, автор: Владимир Дьяконов. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x