Владимир Дьяконов - Maple 9.5/10 в математике, физике и образовании

Тут можно читать онлайн Владимир Дьяконов - Maple 9.5/10 в математике, физике и образовании - бесплатно ознакомительный отрывок. Жанр: Математика, издательство СОЛОН-Пресс, год 2006. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Maple 9.5/10 в математике, физике и образовании
  • Автор:
  • Жанр:
  • Издательство:
    СОЛОН-Пресс
  • Год:
    2006
  • Город:
    Москва
  • ISBN:
    5-98003-258-4
  • Рейтинг:
    3.67/5. Голосов: 91
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Владимир Дьяконов - Maple 9.5/10 в математике, физике и образовании краткое содержание

Maple 9.5/10 в математике, физике и образовании - описание и краткое содержание, автор Владимир Дьяконов, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

Книга является справочником и руководством пользователя по новейшим системам символьной (аналитической) математики — Maple 9.5 и Maple 10. Это признанные мировые лидеры в области аналитических вычислений, прошедшие серьезную сертификацию в этой области. Кратко описан интерфейс систем и подробно их обширные возможности в математике, физике и образовании. Особое внимание уделено технике практических вычислений и визуализации их результатов, а также решению дифференциальных уравнений различного типа. Описаны средства символьных и численных вычислений, графические и программные возможности систем, пакеты их расширения, маплеты и практика применения Maple в математических и физических расчетах. Прилагаемый CD-ROM содержит более 340 файлов с примерами вычислений. Для научно-технических работников, студентов и преподавателей университетов и вузов.

Maple 9.5/10 в математике, физике и образовании - читать онлайн бесплатно ознакомительный отрывок

Maple 9.5/10 в математике, физике и образовании - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Владимир Дьяконов
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать
Maple 9510 в математике физике и образовании - изображение 394

Для демонстрации вычисления длины дуги заданной аналитической функции имеется Maplet-инструмент ArcLench. Для вызова его окна (рис. 4.24) нужно исполнить команду (в стандартном варианте интерфейса): Tools→Tutors→Calculus-Single Variables→ArcLench….

Рис 424 Окно Mapletинструмента для вычисления длины дуги Данный инструмент - фото 395

Рис. 4.24 Окно Maplet-инструмента для вычисления длины дуги

Данный инструмент по заданной функции f(x) и значениям а и b вычисляет длину дуги, выводит ее значение и вид интеграла, а также строит график функции, ее производной и зависимости длины дуги, начинающейся в точке а от текущего значения х, меняющегося от а до b. Соответствующие графики, отличающиеся цветом кривых, показываются в левой части окна инструмента.

Кнопка Color открывает окно выбора цвета из списка, который представлен окном Choose the color…, показанным внутри окна инструмента (см. рис. 4.24).

Выбрав цвет нужной кривой нажатие кнопки OK можно вызвать панель выбора цветов Select a color, показанную на рис. 4.25. По завершении выбора цвета нужная кривая будет отображена в новом цвете.

Рис 425 Панель выбора цвета 473 Иллюстрация теоремы о среднем Первая - фото 396

Рис. 4.25 Панель выбора цвета

4.7.3. Иллюстрация теоремы о среднем

Первая теорема о среднем гласит, что если f(x) интегрируемая функция, непрерывная на отрезке [a, b], то существует по крайней мере одно значение х=ξ в интервале [a, b], при котором

Иными площадь определяемая интегралом может быть вычислена как площадь - фото 397

Иными площадь, определяемая интегралом может быть вычислена как площадь прямоугольника с основанием — отрезком ab и высотой f(ξ).

Для иллюстрации этого положения служит Maplet-инструмент Mean Value Theorem. Его окно (рис. 4.26) открывается исполнением команды Tools→Tutors Calculus-Single Variables→Mean Value Theorem… Работа с окном вполне очевидна. На графике строится кривая функции, отрезок, проходящий через ее концевые точки, точка со значением х=с=ξ и касательная к ней. Главный результат — значение с=ξ .

Рис 4 26 Окно Mapletинструмента для иллюстрации первой теоремы о среднем - фото 398

Рис. 4. 26. Окно Maplet-инструмента для иллюстрации первой теоремы о среднем

4.7.4. Построение касательной к заданной точке кривой

Для построения касательной к заданной точке на кривой f(x) служит Марlet-инструмент Tangent. Его окно (рис. 4.27) открывается исполнением команды Tools→Tutors→Calculus-Single Variables→Tangent…. Работа с окном вполне очевидна. На графике строится кривая функции и касательная к заданной точке х. Наклон касательной определяется значением первой производной f'(x), значение которой Slope и уравнений касательной вычисляются.

Рис 427 Окно Mapletинструмента для иллюстрации построения касательной к - фото 399

Рис. 4.27. Окно Maplet-инструмента для иллюстрации построения касательной к заданной точке

4.7.5. Построение касательной к заданной точке кривой и секущих линий

В некоторых случаях, например при реализации метода Ньютона решения нелинейных уравнений, помимо построения касательной к заданной точке кривой f(x) нужно строить секущие линии и определять их точки пересечения с f(x).

Для этого служит Maplet-инструмент Tangent and Secant. Его окно (рис. 4.28) открывается исполнением команды Tools→Tutors Calculus-Single Variables→Tangent and Secant…. Работа с окном вполне очевидна. На графике строится кривая функции и касательная к заданной точке х. Дополнительно строится ряд секущих. Возможно построение с применением анимации.

Рис 428 Окно Mapletинструмента для иллюстрации построения касательной к - фото 400

Рис. 4.28. Окно Maplet-инструмента для иллюстрации построения касательной к заданной точке и секущих линий

4.7.6. Вычисление поверхности вращения кривой

Пусть отрезок кривой f(х), при х в интервале [а,b] вращается вокруг оси 0х. Тогда площадь полученной фигуры вращения равна:

Для вычисления этой площади служит Mapletинструмент Surface of Revolution Его - фото 401

Для вычисления этой площади служит Maplet-инструмент Surface of Revolution. Его окно (рис. 4.29) открывается исполнением команды Tools Tutors→Calculus-Single Variables→Surface of Revolution…. Работа с окном вполне очевидна. На графике строится кривая функции и поверхность вращения этой кривой в 3D прямоугольной системе координат. Вычисляется значение площади. Вычисления возможны и при вращении отрезка кривой вокруг оси 0у.

Рис 429 Окно Mapletинструмента для иллюстрации вычисления площади фигуры - фото 402

Рис. 4.29. Окно Maplet-инструмента для иллюстрации вычисления площади фигуры, полученной вращением отрезка кривой

4.7.7. Вычисление объема фигуры, полученной вращением отрезка кривой

Пусть отрезок кривой f(х), при х в интервале [a, b], вращается вокруг оси 0х. Тогда объем полученной фигуры вращения равен:

Maple 9510 в математике физике и образовании - изображение 403

Для вычисления этого объема служит Maplet-инструмент Volume of Revolution. Его окно (рис. 4.30) открывается исполнением команды Tools→Tutors→Calculus-Single Variables→Volume of Revolution…. Работа с окном вполне очевидна. На графике строится кривая функции и поверхность вращения этой кривой в 3D прямоугольной системе координат. Вычисляется значение объема полученной фигуры. Вычисления возможны и при вращении отрезка кривой вокруг оси 0у.

Рис 430 Окно Mapletинструмента для иллюстрации вычисления объема фигуры - фото 404

Рис. 4.30. Окно Maplet-инструмента для иллюстрации вычисления объема фигуры, полученной вращением отрезка кривой

4.8. Решение уравнений и неравенств

4.8.1. Основная функция solve

Одиночное нелинейное уравнение , например трансцендентное, можно задать в одной из двух форм:

F(x) = 0 или f(x) = expr ,

expr — выражение. Второе уравнение всегда можно представить в виде F(x)=f(x)-expr= 0, то есть в форме первого уравнения.

При наличии аналитического решения оно находится путем поиска в ядре необходимых формул, описывающих такое решение. Но далеко не всегда нелинейные уравнения имеют аналитическое решение. В этом случае решение возможно численными методами.

Maple 9.5 имеет мощные средства для решение линейных и нелинейных уравнений и неравенств . Так, для решения линейных и нелинейных уравнений в аналитическом виде используется достаточно универсальная и гибкая функция

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Владимир Дьяконов читать все книги автора по порядку

Владимир Дьяконов - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Maple 9.5/10 в математике, физике и образовании отзывы


Отзывы читателей о книге Maple 9.5/10 в математике, физике и образовании, автор: Владимир Дьяконов. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x