Владимир Дьяконов - Maple 9.5/10 в математике, физике и образовании
- Название:Maple 9.5/10 в математике, физике и образовании
- Автор:
- Жанр:
- Издательство:СОЛОН-Пресс
- Год:2006
- Город:Москва
- ISBN:5-98003-258-4
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Владимир Дьяконов - Maple 9.5/10 в математике, физике и образовании краткое содержание
Книга является справочником и руководством пользователя по новейшим системам символьной (аналитической) математики — Maple 9.5 и Maple 10. Это признанные мировые лидеры в области аналитических вычислений, прошедшие серьезную сертификацию в этой области. Кратко описан интерфейс систем и подробно их обширные возможности в математике, физике и образовании. Особое внимание уделено технике практических вычислений и визуализации их результатов, а также решению дифференциальных уравнений различного типа. Описаны средства символьных и численных вычислений, графические и программные возможности систем, пакеты их расширения, маплеты и практика применения Maple в математических и физических расчетах. Прилагаемый CD-ROM содержит более 340 файлов с примерами вычислений. Для научно-технических работников, студентов и преподавателей университетов и вузов.
Maple 9.5/10 в математике, физике и образовании - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
solve(eqn, var)
или
solve({eqn1,eqn2,...},{var1,var2,...})
где eqn — уравнение, содержащее функцию ряда переменных, var — переменная, по которой ищется решение. Если при записи eqn не используются знак равенства или знаки отношения, считается, что solve ищет корни уравнения eqn=0. Если eqn полином, то solve вычисляет все корни полинома — как действительные, так и комплексные.
Характер решений можно изменить с помощью глобальных системных переменных:
_EnvExplicit — при значении true выдает решение без применения конструкции RootOf;
_EnvAllSolutions — при значении true задает выдачу всех решений;
_SolutionsMayBeLost — при значении true дает решение, которое при обычном применении функции solve возвращает значения NULL;
_MaxSols — задает максимальное число решений;
_EnvTryHard — при значении true может дать компактное решение, но это может потребовать увеличения времени вычислений.
В решениях могут встречаться следующие обозначения:
_NN — указывает на неотрицательные решения;
_В — указывает на решения в бинарной форме;
_Z — указывает на то, что решение содержит целые числа;
%N — при текстовом формате вывода задает общие члены решения и обеспечивает более компактную форму его представления.
В форме solve[subtopic] возможны параметры subtopic функции solve следующих типов:
floats functions identity ineq linear
radical scalar series system
При решении систем уравнений они и список переменных задаются как множества, то есть в фигурных скобках. При этом и результат решения получается в виде множества. Чтобы преобразовать его к обычному решению, нужно использовать функцию assign, которая обеспечивает присваивание переменным значений, взятых из множества.
Функция solve старается дать решение в аналитическом виде. Это не означает, что ее нельзя использовать для получения корней уравнений в численном виде. Просто для этого придется использовать функции evalf или convert. Если результат решения представлен через функцию RootOf, то зачастую можно получить все корни с помощью функции allvalues.
4.8.2. Решение одиночных нелинейных уравнений
Решение одиночных нелинейных уравнений вида f(х)=0 легко обеспечивается функций solve(f(x),x). Это демонстрируют следующие примеры (файл solve):
> solve(х^3-2*х+1,х);

> solve(х^(3/2)=3,х);
> evalf(%);
> solve(sqrt(ln(х))=2,х);
> evalf(%);
Если уравнение записывается без правой части, то это означает, что она равна нулю. Часто бывает удобно представлять уравнение и его решение в виде отдельных объектов, отождествленных с определенной переменной (файл solve):
> eq:=(2*х^2+х+3=0);
> s: = [solve(eq,x)];

В частности, это позволяет легко проверить решение (даже если оно не одно, как в приведенном примере) подстановкой (subs):
> subs(x=s[1],eq);

> subs(x=s[2],eq);

> evalf(%);
Сводящиеся к одному уравнению равенства вида f 1 (х)=f 2 (x) также решаются функцией solve(f1(x)=f2(x),x):
> solve(х^4=-х-1,х);
> evalf(%);
> solve({exp(x)=sin(x)},x);
> evalf(%);
> solve(x^4=2*x,x);

> evalf(%);
Обратите внимание в этих примерах на эффективность применения функции evalf, позволяющей получить решения, выраженные через функцию RootOf, в явном виде.
Некоторые даже с виду простые уравнения могут дать неожиданные для многих пользователей результаты. Пример такого рода приведен ниже (файл solve):
> restart;eq:=ехр(-х)=х;sol:=solve(exp(-х)=х,х);
> evalf(sol);
В данном случае решение получено через значение специальной функции Ламберта. Впрочем, с помощью функции evalf его можно представить в численном виде.
4.8.3. Решение тригонометрических уравнений
Функция solve может использоваться для решения тригонометрических уравнений:
> solve (sin (х) =.2, х);
> solve(sin(х)-1/2,х);

> solve(cos(х)=.5, х);
Однако из приведенных примеров видно, что при этом найдено только одно (главное) решение. Оно ищется в интервале [-π, π]. Периодичность тригонометрических функций и связанная с этим множественность решений оказались проигнорированы. Однако можно попытаться найти все периодические решения, выполнив следующую команду:
> _EnvAllSolutions:=true;
Указанная в ней системная переменная отвечает за поиск всех периодических решений, когда ее значение равно true, и дает поиск только главных решений при значении false, принятом по умолчанию. Так что теперь можно получить следующее:
> solve(sin(х)=1/2,х);

Здесь вспомогательные переменные _ВI~ и _ZI~ могут иметь только целочисленные значения (знак ~ означает, что на них наложено ограничение — в нашем случае в виде целочисленности возможных значений).
На рис. 4.31 показан более сложный случай решения нелинейного уравнения вида f 1 (х)=f 2 (x), где f 1 (х)=sin(x) и f 2 (х)=cos(x)- 1. Решение дано в графическом виде и в аналитическом для двух случаев — нахождения главных значений корней и нахождения всех корней. Обратите внимание на команду _EnvAllSolutions:=true задающую поиск всех корней.

Рис. 4.31. Пример решения уравнения, имеющего периодические решения
В подобных решениях встречаются переменные _В1~ и означающие ряд натуральных чисел. Благодаря этому через них можно представить периодически повторяющиеся решения.
Примеры решения уравнений с обратными тригонометрическими функциями показаны ниже:
> eqns := 2*arcsin(x) — arccos(5*x);
Интервал:
Закладка: