Владимир Дьяконов - Maple 9.5/10 в математике, физике и образовании

Тут можно читать онлайн Владимир Дьяконов - Maple 9.5/10 в математике, физике и образовании - бесплатно ознакомительный отрывок. Жанр: Математика, издательство СОЛОН-Пресс, год 2006. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Maple 9.5/10 в математике, физике и образовании
  • Автор:
  • Жанр:
  • Издательство:
    СОЛОН-Пресс
  • Год:
    2006
  • Город:
    Москва
  • ISBN:
    5-98003-258-4
  • Рейтинг:
    3.67/5. Голосов: 91
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Владимир Дьяконов - Maple 9.5/10 в математике, физике и образовании краткое содержание

Maple 9.5/10 в математике, физике и образовании - описание и краткое содержание, автор Владимир Дьяконов, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

Книга является справочником и руководством пользователя по новейшим системам символьной (аналитической) математики — Maple 9.5 и Maple 10. Это признанные мировые лидеры в области аналитических вычислений, прошедшие серьезную сертификацию в этой области. Кратко описан интерфейс систем и подробно их обширные возможности в математике, физике и образовании. Особое внимание уделено технике практических вычислений и визуализации их результатов, а также решению дифференциальных уравнений различного типа. Описаны средства символьных и численных вычислений, графические и программные возможности систем, пакеты их расширения, маплеты и практика применения Maple в математических и физических расчетах. Прилагаемый CD-ROM содержит более 340 файлов с примерами вычислений. Для научно-технических работников, студентов и преподавателей университетов и вузов.

Maple 9.5/10 в математике, физике и образовании - читать онлайн бесплатно ознакомительный отрывок

Maple 9.5/10 в математике, физике и образовании - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Владимир Дьяконов
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Примеры применения функции minimize приведены ниже (файл minmax):

> minimize(х^2-3*х+y^2+3*y+3);

minimizeх23хy23y3 location minimizeх23хy23y3 - фото 513

> minimize(х^2-3*х+y^2+3*y+3, location);

minimizeх23хy23y3 х24 y42 location 1 х 1 y - фото 514

> minimize(х^2-3*х+y^2+3*y+3, х=2..4, y=-4..-2, location);

-1, {[{х = 1, y = -2}, -1]}

> minimize(х^2+y^2,х=-10..10,y=-10..10);

0

> minimize(х^2 + y^2,х=-10..10,y=-10..10, location);

0, {[y = 0, х = 0},0]}

> minimize(abs(х*ехр(-х^2)-1/2), х=-4..4);

½-½√2 е (-1/2)

> minimize(abs(х*ехр(-х^2)-1/2), х=-4..4, location=true);

Приведем подобные примеры и для функции поиска максимума maximize - фото 515

Приведем подобные примеры и для функции поиска максимума — maximize:

> maximize(х*ехр(-х));

е (-1)

> maximize(х*ехр(-х),location);

е (-1), {[{х=1}, е (-1)] }

> maximize(sin(х)/х,х=-2..2,location);

1, {[{x=0}, 1]}

> maximize(exp(-х)*sin(y),х=-10..10,y=-10..10, location);

Обратите внимание на то что в предпоследнем примере Maple 95 выдал верный - фото 516

Обратите внимание на то, что в предпоследнем примере Maple 9.5 выдал верный результат, тогда как Maple 8 в этом примере явно «оскандалился» и вместо максимума функции sin(x)/x, равного 1 при x=0, выдал результат в виде бесконечности:

∞, {[{x =0}, ∞]}

Эта ситуация кажется более чем странной, если учесть, что в этом примере еще Maple 6 давал правильный результат. Это еще один пример, показывающий, что в отдельных случаях Maple может давать неверные результаты.

Применим функцию minimize для поиска минимума тестовой функции Розенброка. Рис. 5.2 показывает, что minimize прекрасно справляется с данной задачей. На рис. 5.2 представлено также построение функции Розенброка, хорошо иллюстрирующее ее особенности.

Рис 52 Поиск минимума функции Розенброка и построение ее графика Трудность - фото 517

Рис. 5.2. Поиск минимума функции Розенброка и построение ее графика

Трудность поиска минимума функции Розенброка связана с ее характерными особенностями. Из рис. 5.2 видно, что эта функция представляет собой поверхность типа «глубокого оврага с почти плоским дном», в котором и расположена точка минимума. Такая особенность этой функции существенно затрудняет поиск минимума. То, что система Maple 9.5 справляется с данной тестовой функцией, вовсе не означает, что трудности в поиске минимума или максимума других функций остаются позади.

5.1.7. Поиск минимума функций с ограничениями методом выпуклого программирования

Часто необходимо найти минимум некоторой функции при наличии ограничений на значения независимых переменных. Ниже рассматривается нетривиальная задача такого рода, решаемая методом выпуклого программирования (разновидность нелинейного программирования) — файл minp.

Пусть надо найти минимум функции f:=х1^2+(х2–1)^2 при следующих ограничениях: 2x1+х2>=7, x1+2*х2>=5, x1>=0 и х2>=0. Составим на основе этого функцию Лагранжа:

> F:=x1^2+(х2-1)^2+y1*(7-2*х1-х2)+y2*(5-х1-2*х2);

F:= x1² + (х2-1)² + у1(7-2х1-х2) + у2(5-х1-2х2)

и найдем ее частные производные:

> F1:=diff(F,x1);

F1:=2x1-2y1-y2

> F2:=diff(F,x2);

F2:=2x2 -2-y1-2y2

> F3:=dxff(F,y1);

F3:=7-2x1-x2

> F4:=diff(F,y2);

F4:=5-x1-2x2

Соберем воедино все равенства и неравенства этой задачи:

> eq:={Fl=u1,F2=u2,x1*F1,x2*F2,F3+v1,F4+v2,y1*F3,y2*F4,

x1>=0,x2>=0,y1>=0,y2>=0,u1>=0,u2>=0,v1>=0,v2>=0};

eq := {2x1-2y1-y2=u1, 2x2-2-y1-2y2=u2, 7-2x1-x2+v1, 5-x1-2x2+v2, y1(7-2x1-x2), y2(5-x1-2x2), x1(2x1-2y1-y2), x2(2x2-2-y1-2y2), 0≤x1, 0≤x2, 0≤y1, 0≤y2,0≤u1,0≤v1, 0≤v2, 0≤u2}

Первые шесть равенств соответствуют теореме Куна-Такера о том, что в точке минимума существуют целые неотрицательные числа u1, u2 , v1 и v2 для которых выполняются эти шесть равенств (обратите внимание на то, что запись только левой части равенства означает, что она приравнивается к 0). Теперь с помощью функции solve можно найти решение данной задачи:

> solve(eq,{x1,х2,y1,y2,u1,u2,v1,v2});

Таким образом на указанном множестве функция достигает минимума в точке 125 - фото 518

Таким образом, на указанном множестве функция достигает минимума в точке (12/5, 11/5).

5.1.8. Анализ функций на непрерывность

Для исследования функций на непрерывность (отсутствие разрывов) Maple имеет функцию iscont, записываемую в ряде форм:

iscont(expr, х = а..b)

iscont(expr, х = а..b, 'closed')

iscont(expr, х = а..b, 'open')

Она позволяет исследовать выражение expr, заданное в виде зависимости от переменной х, на непрерывность. Если выражение непрерывно, возвращается логическое значение true, иначе — false. Возможен также результат типа FAIL. Параметр 'closed' показывает, что конечные точки должны также проверяться, а указанный по умолчанию параметр 'open' — что они не должны проверяться.

Работу функции iscont иллюстрируют следующие примеры (файл fanal):

> iscont(1/х^2,х=-1..1);

false

> iscont(1/х^2,х=-1..1,'closed');

false

> iscont(1/x,х=0..1);

true

> iscont(1/x,x=0..1,'closed');

false

> iscont(1/(x+a),x=-1..1);

FAIL

Рекомендуется внимательно присмотреться к результатам этих примеров и опробовать свои собственные примеры.

5.1.9. Определение точек нарушения непрерывности

Функции, не имеющие непрерывности, доставляют много хлопот при их анализе. Поэтому важным представляется анализ функций на непрерывность. Начиная с Maple 7, функция discont(f,x) позволяет определить точки, в которых нарушается непрерывность функции f(x). Она вычисляет все точки в пределах изменения х от –∞ до +∞. Результаты вычислений могут содержать особые экстрапеременные с именами вида _Zn~ и _NNn~. В частности, они позволяют оценить периодические нарушения непрерывности функций. Примеры применения функции discont приведены ниже (файл fanal):

> discont(1/(х-2),х);

{2}

> discont(1/((х-1)*(х-2)*(х-3)),х);

{1, 2, 3}

> discont(GAMMA(х/2),х);

{-2_NN1~}

Весьма рекомендуется наряду с применением данной функции просмотреть график анализируемой функции.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Владимир Дьяконов читать все книги автора по порядку

Владимир Дьяконов - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Maple 9.5/10 в математике, физике и образовании отзывы


Отзывы читателей о книге Maple 9.5/10 в математике, физике и образовании, автор: Владимир Дьяконов. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x