Владимир Дьяконов - Maple 9.5/10 в математике, физике и образовании

Тут можно читать онлайн Владимир Дьяконов - Maple 9.5/10 в математике, физике и образовании - бесплатно ознакомительный отрывок. Жанр: Математика, издательство СОЛОН-Пресс, год 2006. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Maple 9.5/10 в математике, физике и образовании
  • Автор:
  • Жанр:
  • Издательство:
    СОЛОН-Пресс
  • Год:
    2006
  • Город:
    Москва
  • ISBN:
    5-98003-258-4
  • Рейтинг:
    3.67/5. Голосов: 91
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Владимир Дьяконов - Maple 9.5/10 в математике, физике и образовании краткое содержание

Maple 9.5/10 в математике, физике и образовании - описание и краткое содержание, автор Владимир Дьяконов, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

Книга является справочником и руководством пользователя по новейшим системам символьной (аналитической) математики — Maple 9.5 и Maple 10. Это признанные мировые лидеры в области аналитических вычислений, прошедшие серьезную сертификацию в этой области. Кратко описан интерфейс систем и подробно их обширные возможности в математике, физике и образовании. Особое внимание уделено технике практических вычислений и визуализации их результатов, а также решению дифференциальных уравнений различного типа. Описаны средства символьных и численных вычислений, графические и программные возможности систем, пакеты их расширения, маплеты и практика применения Maple в математических и физических расчетах. Прилагаемый CD-ROM содержит более 340 файлов с примерами вычислений. Для научно-технических работников, студентов и преподавателей университетов и вузов.

Maple 9.5/10 в математике, физике и образовании - читать онлайн бесплатно ознакомительный отрывок

Maple 9.5/10 в математике, физике и образовании - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Владимир Дьяконов
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

В пакете orthopoly системы Maple 9.5 задано 6 функций:

> with(orthopoly);

[G, Н, L, Р, Т, U]

Однобуквенные имена этих функций отождествляются с первой буквой в наименовании ортогональных полиномов. Вопреки принятым в Maple правилам, большие буквы в названиях этих полиномов не указывают на инертность данных функций — все они являются немедленно вычисляемыми. В данном разделе функции этого пакета будут полностью описаны.

Отметим определения указанных функций:

G(n,a,x) — полином Гегенбауэра (из семейства ультрасферических полиномов);

H(n,x) — полином Эрмита;

L(n,x) — полином Лагерра;

L(n,a,x) — обобщенный полином Лагерра;

P(n,x) — полином Лежандра;

P(n,a,b,x) — полином Якоби;

T(n,x) — обобщенный полином Чебышева первого рода;

U(n,x) — обобщенный полином Чебышева второго рода.

Свойства ортогональных многочленов хорошо известны. Все они характеризуются целочисленным порядком n, аргументом х и иногда дополнительными параметрами а и b. Существуют простые рекуррентные формулы, позволяющие найти полином n-го порядка по значению полинома (n-1)-го порядка. Эти формулы и используются для вычисления полиномов высшего порядка.

5.4.2. Вычисление ортогональных полиномов

Ниже представлены примеры вычисления ортогональных полиномов (файл orthpol):

> G(0, 1, х);

1

> G(1, 1, х);

> G(1, 1, 5);

10

> Н(3, х);

8x³ - 12х

> L(3, х);

Maple 9510 в математике физике и образовании - изображение 545

> L(2, а, х);

Р2 х Р2 1 1 х Т5 х 16 - фото 546

> Р(2, х);

картинка 547

> Р(2, 1, 1, х);

картинка 548

> Т(5, х);

16х 5- 20х 3+ 5х

> U(5, х);

32х 5- 32х 3+ 6х

В отличие от ряда элементарных функций, ортогональные многочлены определены только для действительного аргумента х. При комплексном аргументе ранее результат просто повторял исходное выражение с многочленом:

> evalf(U(2,2+3*I));

Р(2, 2+3I)

Но уже в Maple 9 ортогональные полиномы с комплексными аргументами могут вычисляться:

> evalf(U(2,2+3*I));

-21. +48.I

Ортогональные многочлены не определены и для дробного показателя n. Впрочем, надо отметить, что такие многочлены на практике используются крайне редко.

5.4.3. Построение графиков ортогональных полиномов

Представляет интерес построение графиков ортогональных многочленов. На рис. 5.6 построены графики ряда многочленов Гегенбауэра и Эрмита. На рис. 5.7 построены графики ортогональных многочленов Лагерра и Лежандра. Наконец на рис. 5.8 даны графики ортогональных многочленов Чебышева T(n , х) и U(n, x) .

Рис 56 Графики ортогональных многочленов Гегенбауэра и Эрмита Рис 57 - фото 549

Рис. 5.6. Графики ортогональных многочленов Гегенбауэра и Эрмита

Рис 57 Графики ортогональных многочленов Лагерра и Лежандра Рис 58 - фото 550

Рис. 5.7. Графики ортогональных многочленов Лагерра и Лежандра

Рис 58 Графики ортогональных многочленов Чебышева Приведенные графики дают - фото 551

Рис. 5.8. Графики ортогональных многочленов Чебышева

Приведенные графики дают начальное представление о поведении ортогональных многочленов. К примеру, многочлены Чебышева имеют минимальное отклонение от оси абсцисс в заданном интервале изменения х. Это их свойство объясняет полезное применение таких многочленов при решении задач аппроксимации функций, которые рассматриваются в этой главе далее. Можно порекомендовать читателю по их образцу и подобию построить графики ортогональных многочленов при других значения параметра n и диапазонах изменения аргумента х.

5.4.4. Работа с рядами ортогональных многочленов

Для работы с рядами ортогональных многочленов имеется пакет OrthogonalSeries для работы с рядами ортогональных многочленов. Он имеет довольно представительный набор функций:

> with(OrthogonalSeries);

[Add, ApplyOperator, ChangeBasis, Coefficients, ConvertToSum, Copy, Create, Degree, Derivate, DerivativeRepresentation, Evaluate, GetInfo, Multiply, PolynomialMultiply, ScalarMultiply, SimplifyCoefficients, Truncate]

Поскольку этот пакет представляет интерес, в основном, для опытных математиков, мы не будем рассматривать его функции (в целом достаточно простые) подробно и ограничимся несколькими примерами. В следующем примере с помощью функции Create создается бесконечный ряд с ортогональным многочленом Эрмита в составе базового выражения ряда:

> OrthogonalSeries[Create](u(n),HermiteH(n,x));

В другом примере показано представление полиномиального выражения в новом - фото 552

В другом примере показано представление полиномиального выражения в новом базисе с ортогональными многочленами Чебышева с помощью функции ChangeBasis:

> OrthogonalSeries[ChangeBasis](1+3*у*х^2+у^3*х,

ChebyshevT(n,х), ChebyshevU(m, y));

1 + ¾ChebyshevT(2, x) ChebyshevU(1, y) + ¾ChebyshevU(1, y) + ½ChebyshevT(1, x) ChebyshevU(1, y)

> OrthogonalSeries[Evaluate](%);

3x²y + yx + 1

Обратите внимание на то, что новое выражение после исполнения команды Evaluate приняло вид исходного выражения.

Следующий пример демонстрирует создание ряда на основе ортогональных многочленов Чебышева и его копирование с помощью функции Сору:

> S:=Create((-1)^n/n!, ChebyshevT(n, х));

ТСоруS Вычисление производной от ряда с ортогональными - фото 553

> Т:=Сору(S);

Вычисление производной от ряда с ортогональными многочленами представлено ниже - фото 554

Вычисление производной от ряда с ортогональными многочленами представлено ниже:

> S := Create(u(n),ChebyshevT(n,х));

DerivateS х Еще один пример демонстрирует операцию скалярного - фото 555

> Derivate(S, х);

Еще один пример демонстрирует операцию скалярного умножения ряда с помощью - фото 556

Еще один пример демонстрирует операцию скалярного умножения ряда с помощью функции ScalarMultiply:

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Владимир Дьяконов читать все книги автора по порядку

Владимир Дьяконов - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Maple 9.5/10 в математике, физике и образовании отзывы


Отзывы читателей о книге Maple 9.5/10 в математике, физике и образовании, автор: Владимир Дьяконов. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x