Владимир Дьяконов - Maple 9.5/10 в математике, физике и образовании
- Название:Maple 9.5/10 в математике, физике и образовании
- Автор:
- Жанр:
- Издательство:СОЛОН-Пресс
- Год:2006
- Город:Москва
- ISBN:5-98003-258-4
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Владимир Дьяконов - Maple 9.5/10 в математике, физике и образовании краткое содержание
Книга является справочником и руководством пользователя по новейшим системам символьной (аналитической) математики — Maple 9.5 и Maple 10. Это признанные мировые лидеры в области аналитических вычислений, прошедшие серьезную сертификацию в этой области. Кратко описан интерфейс систем и подробно их обширные возможности в математике, физике и образовании. Особое внимание уделено технике практических вычислений и визуализации их результатов, а также решению дифференциальных уравнений различного типа. Описаны средства символьных и численных вычислений, графические и программные возможности систем, пакеты их расширения, маплеты и практика применения Maple в математических и физических расчетах. Прилагаемый CD-ROM содержит более 340 файлов с примерами вычислений. Для научно-технических работников, студентов и преподавателей университетов и вузов.
Maple 9.5/10 в математике, физике и образовании - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
В пакете orthopoly системы Maple 9.5 задано 6 функций:
> with(orthopoly);
Однобуквенные имена этих функций отождествляются с первой буквой в наименовании ортогональных полиномов. Вопреки принятым в Maple правилам, большие буквы в названиях этих полиномов не указывают на инертность данных функций — все они являются немедленно вычисляемыми. В данном разделе функции этого пакета будут полностью описаны.
Отметим определения указанных функций:
G(n,a,x) — полином Гегенбауэра (из семейства ультрасферических полиномов);
H(n,x) — полином Эрмита;
L(n,x) — полином Лагерра;
L(n,a,x) — обобщенный полином Лагерра;
P(n,x) — полином Лежандра;
P(n,a,b,x) — полином Якоби;
T(n,x) — обобщенный полином Чебышева первого рода;
U(n,x) — обобщенный полином Чебышева второго рода.
Свойства ортогональных многочленов хорошо известны. Все они характеризуются целочисленным порядком n, аргументом х и иногда дополнительными параметрами а и b. Существуют простые рекуррентные формулы, позволяющие найти полином n-го порядка по значению полинома (n-1)-го порядка. Эти формулы и используются для вычисления полиномов высшего порядка.
5.4.2. Вычисление ортогональных полиномов
Ниже представлены примеры вычисления ортогональных полиномов (файл orthpol):
> G(0, 1, х);
> G(1, 1, х);
> G(1, 1, 5);
> Н(3, х);
> L(3, х);

> L(2, а, х);

> Р(2, х);

> Р(2, 1, 1, х);

> Т(5, х);
> U(5, х);
В отличие от ряда элементарных функций, ортогональные многочлены определены только для действительного аргумента х. При комплексном аргументе ранее результат просто повторял исходное выражение с многочленом:
> evalf(U(2,2+3*I));
Но уже в Maple 9 ортогональные полиномы с комплексными аргументами могут вычисляться:
> evalf(U(2,2+3*I));
Ортогональные многочлены не определены и для дробного показателя n. Впрочем, надо отметить, что такие многочлены на практике используются крайне редко.
5.4.3. Построение графиков ортогональных полиномов
Представляет интерес построение графиков ортогональных многочленов. На рис. 5.6 построены графики ряда многочленов Гегенбауэра и Эрмита. На рис. 5.7 построены графики ортогональных многочленов Лагерра и Лежандра. Наконец на рис. 5.8 даны графики ортогональных многочленов Чебышева T(n , х) и U(n, x) .

Рис. 5.6. Графики ортогональных многочленов Гегенбауэра и Эрмита

Рис. 5.7. Графики ортогональных многочленов Лагерра и Лежандра

Рис. 5.8. Графики ортогональных многочленов Чебышева
Приведенные графики дают начальное представление о поведении ортогональных многочленов. К примеру, многочлены Чебышева имеют минимальное отклонение от оси абсцисс в заданном интервале изменения х. Это их свойство объясняет полезное применение таких многочленов при решении задач аппроксимации функций, которые рассматриваются в этой главе далее. Можно порекомендовать читателю по их образцу и подобию построить графики ортогональных многочленов при других значения параметра n и диапазонах изменения аргумента х.
5.4.4. Работа с рядами ортогональных многочленов
Для работы с рядами ортогональных многочленов имеется пакет OrthogonalSeries для работы с рядами ортогональных многочленов. Он имеет довольно представительный набор функций:
> with(OrthogonalSeries);
Поскольку этот пакет представляет интерес, в основном, для опытных математиков, мы не будем рассматривать его функции (в целом достаточно простые) подробно и ограничимся несколькими примерами. В следующем примере с помощью функции Create создается бесконечный ряд с ортогональным многочленом Эрмита в составе базового выражения ряда:
> OrthogonalSeries[Create](u(n),HermiteH(n,x));

В другом примере показано представление полиномиального выражения в новом базисе с ортогональными многочленами Чебышева с помощью функции ChangeBasis:
> OrthogonalSeries[ChangeBasis](1+3*у*х^2+у^3*х,
ChebyshevT(n,х), ChebyshevU(m, y));
> OrthogonalSeries[Evaluate](%);
Обратите внимание на то, что новое выражение после исполнения команды Evaluate приняло вид исходного выражения.
Следующий пример демонстрирует создание ряда на основе ортогональных многочленов Чебышева и его копирование с помощью функции Сору:
> S:=Create((-1)^n/n!, ChebyshevT(n, х));

> Т:=Сору(S);

Вычисление производной от ряда с ортогональными многочленами представлено ниже:
> S := Create(u(n),ChebyshevT(n,х));

> Derivate(S, х);

Еще один пример демонстрирует операцию скалярного умножения ряда с помощью функции ScalarMultiply:
Читать дальшеИнтервал:
Закладка: