Владимир Дьяконов - Maple 9.5/10 в математике, физике и образовании
- Название:Maple 9.5/10 в математике, физике и образовании
- Автор:
- Жанр:
- Издательство:СОЛОН-Пресс
- Год:2006
- Город:Москва
- ISBN:5-98003-258-4
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Владимир Дьяконов - Maple 9.5/10 в математике, физике и образовании краткое содержание
Книга является справочником и руководством пользователя по новейшим системам символьной (аналитической) математики — Maple 9.5 и Maple 10. Это признанные мировые лидеры в области аналитических вычислений, прошедшие серьезную сертификацию в этой области. Кратко описан интерфейс систем и подробно их обширные возможности в математике, физике и образовании. Особое внимание уделено технике практических вычислений и визуализации их результатов, а также решению дифференциальных уравнений различного типа. Описаны средства символьных и численных вычислений, графические и программные возможности систем, пакеты их расширения, маплеты и практика применения Maple в математических и физических расчетах. Прилагаемый CD-ROM содержит более 340 файлов с примерами вычислений. Для научно-технических работников, студентов и преподавателей университетов и вузов.
Maple 9.5/10 в математике, физике и образовании - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Аппроксимацией в системах компьютерной математики обычно называют получение приближенных значений какого-либо выражения. Однако под аппроксимацией функциональных зависимостей подразумевается получение некоторой конкретной функции, вычисленные значения которой с некоторой точностью аналогичны аппроксимируемой зависимости. Обычно предпочитают найти одну зависимость, приближающую заданный ряд узловых точек. Часто для этого используют степенные многочлены — полиномы.
Здесь мы будем рассматривать такие виды аппроксимации, которые дают точные значения функции y(x) в узловых точках в пределах погрешности вычислений по умолчанию. Если аппроксимирующая зависимость выбирается из условия наименьшей среднеквадратической погрешности в узловых точках (метод наименьших квадратов), то мы имеем регрессию или приближение функций по методу наименьших квадратов.
5.6.2. Полиномиальная аппроксимация и интерполяция аналитических зависимостей
Рассмотрим основы полиномиальной аппроксимации (приближения) функциональных зависимостей. Пусть приближаемая функция φ(х) должна совпадать с исходной функцией f(х) в (n+1)-точке, то есть должно выполняться равенство: φ(х i)=f(х i)=f i, i = 0, …, n. В качестве приближающей функции примем алгебраический полином:
(5.1)
Выбор конкретного значения n во многом определяется свойствами приближающей функции, требуемой точностью, а также выбором узлов интерполяции. В случае аналитической функциональной зависимости выбор степени полинома может быть любым и чаще всего определяется компромиссом между сложностью полинома, скоростью его вычисления и погрешностью. В качестве критерия согласия принимается условия совпадения функций f и q в узловых точках:
Полином Р n (х) удовлетворяющий данному условию будет интерполяционным полиномом.
Для задачи интерполирования в интервале [a, b] выбираются значения аргументов а≤х 0 1 <���…<���х n ≤b, которые соответствуют значениям f i=f(х i) (i=0, 1, ..., n ) функции f. Для этой функции будет существовать и притом единственный полином степени не выше n, который принимает в узлах х, заданные значения f i . Для нахождения этого полинома решается система алгебраических уравнений
Подставив полученные значения a_k в равенство (5.1) можно получить обобщенную форму представления интерполяционного полинома
(5.3)
Получив интерполяционный полином (5.3), необходимо выяснить, насколько близко он приближается к исходной функции в других точках отрезка [a, b]. Обычно для этого строится график f(x) и Р n (х) и график их разности, т. е. абсолютной погрешности. Последняя определяется выражением:
(5.4)
Вопреки существующему мнению о быстрой потери точности полиномиальной аппроксимации при n>(5–7) погрешность ее быстро уменьшается при увеличении n. Но это только при условии, что все вычисления выполняются точно! При выборе метода приближения необходимо обеспечить по возможности более высокую точность приближения и одновременно простоту построения φ(х) по имеющейся информации о приближаемой функции f(х).
5.6.3. Интерполяционный метод Лагранжа.
При решении практических задач часто используют специальные виды интерполяционных полиномов, которые упрощают некоторые вычислительные процедуры. Данный метод предполагает введение вспомогательного полинома l i(х) степени n. Полином l i(х) в точке х, должен быть равен 1, а в остальных точках отрезка интерполяции должен обращаться в нуль.
Удовлетворяющий этому полином может быть представлен в виде:
(5.5)
Это выражение известно как интерполяционный полином Лагранжа. Важным достоинством ее является то, что число арифметических операций, необходимых для построения полинома Лагранжа, пропорционально n² и является наименьшим для всех форм записи. Данная форма интерполяционного полинома применима как для равноотстоящих, так и для неравноотстоящих узлов. Достоинством является и то, что интерполяционный полином Лагранжа удобен, когда значения функций меняется, а узлы интерполяции неизменны, что имеет место во многих экспериментальных исследованиях. Рекомендуется использовать запись интерполяционного полинома в форме Лагранжа при теоретических исследованиях при изучении вопроса сходимости L n (f, х) к f при n→∞ .
К недостаткам этой формы записи можно отнести то, что с изменением числа узлов необходимо все вычисления проводить заново. Выражение (5.4) можно записать в более компактной форме:
(5.5)
Теоретически максимальную точность обеспечивает полином высокой степени. Однако на практике часто используется полином невысокой степени (линейная и квадратичная интерполяция) с увеличением степени интерполяционного полинома возрастают колебательные свойства полинома. Аппроксимация с помощью интерполяционного полинома Лагранжа является достаточно эффективной, когда интерполируются гладкие функции и число n является малым. В частности в математическом обеспечении компьютерных средств имеется стандартные подпрограммы аппроксимации, в которых реализована формула Лагранжа.
5.6.4. Интерполяционный метод Ньютона
На практике для повышения точности интерполяционного полинома незначительно увеличивают количество узлов интерполяции. В этом случае использование метода Лагранжа неудобно, так как добавление дополнительных узлов приводит необходимости пересчета всего интерполяционного полинома в целом. Эти недостатки устраняются, если записать полином Лагранжа, используя интерполяционный метод Ньютона.
Используя понятия разделенных разностей для полинома Ньютона можно получить выражение:
Представление интерполяционного полинома в форме Ньютона является более удобным в практических расчетах. На практике часто заранее неизвестно количество узлов и, следовательно, степень интерполяционного полинома. Для повышения точности интерполяции в сумму могут быть добавлены новые члены, что требует подключение новых узлов. Добавление новых узлов интерполяции приводит лишь к появлению новых слагаемых полинома, без изменения уже существующих, что не требует пересчета всех коэффициентов заново. При добавлении новых узлов интерполяции неважно, в каком порядке они подключаются, но существует одно условие — узлы х, не должны совпадать.
Читать дальшеИнтервал:
Закладка: