Владимир Дьяконов - Maple 9.5/10 в математике, физике и образовании

Тут можно читать онлайн Владимир Дьяконов - Maple 9.5/10 в математике, физике и образовании - бесплатно ознакомительный отрывок. Жанр: Математика, издательство СОЛОН-Пресс, год 2006. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Maple 9.5/10 в математике, физике и образовании
  • Автор:
  • Жанр:
  • Издательство:
    СОЛОН-Пресс
  • Год:
    2006
  • Город:
    Москва
  • ISBN:
    5-98003-258-4
  • Рейтинг:
    3.67/5. Голосов: 91
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Владимир Дьяконов - Maple 9.5/10 в математике, физике и образовании краткое содержание

Maple 9.5/10 в математике, физике и образовании - описание и краткое содержание, автор Владимир Дьяконов, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

Книга является справочником и руководством пользователя по новейшим системам символьной (аналитической) математики — Maple 9.5 и Maple 10. Это признанные мировые лидеры в области аналитических вычислений, прошедшие серьезную сертификацию в этой области. Кратко описан интерфейс систем и подробно их обширные возможности в математике, физике и образовании. Особое внимание уделено технике практических вычислений и визуализации их результатов, а также решению дифференциальных уравнений различного типа. Описаны средства символьных и численных вычислений, графические и программные возможности систем, пакеты их расширения, маплеты и практика применения Maple в математических и физических расчетах. Прилагаемый CD-ROM содержит более 340 файлов с примерами вычислений. Для научно-технических работников, студентов и преподавателей университетов и вузов.

Maple 9.5/10 в математике, физике и образовании - читать онлайн бесплатно ознакомительный отрывок

Maple 9.5/10 в математике, физике и образовании - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Владимир Дьяконов
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Итак, при задании f(х 1), …, f(х n) приближение к f(x) ищется в виде

511 Коэффициенты а i b iнаходятся из совокупности соотношений Rх jfx - фото 572 (5.11)

Коэффициенты а i, b iнаходятся из совокупности соотношений R(х j)=f(x j) (j=1,…,n), которые можно записать в виде

Данное уравнение образует систему n линейных уравнений относительно n1 - фото 573

Данное уравнение образует систему n линейных уравнений относительно n+1 неизвестных. Такая система всегда имеет нетривиальное решение.

Функция R(x) может быть записана в явном виде в случае n нечетное, если р=q, и n четное, если р-q=1. Для записи функции R(x) в явном виде следует вычислять так называемые обратные разделенные разности, определяемые условиями

и рекуррентным соотношением Интерполирование функций рациональными - фото 574

и рекуррентным соотношением

Интерполирование функций рациональными выражениями обычно рассматривают на - фото 575

Интерполирование функций рациональными выражениями обычно рассматривают на основе аппарата цепных дробей. Тогда интерполирующая рациональная функция записывается в виде цепной дроби

Использование рациональной интерполяции часто целесообразнее интерполяции - фото 576

Использование рациональной интерполяции часто целесообразнее интерполяции полиномами в случае функций с резкими изменениями характера поведения или особенностями производных в точках.

5.6.9. Метод наименьших квадратов (МНК)

При обработке экспериментальных данных, полученных с некоторой погрешностью, интерполяция становиться неразумной. В этом случае целесообразно строить приближающую функцию таким образом, чтобы сгладить влияние погрешности измерения и числа точек эксперимента. Такое сглаживание реализуется при построении приближающей функции по методу наименьших квадратов.

Рассмотрим совокупность значений таблично заданной функции f i в узлах х i при i=0,1,…,n. Предположим, что приближающаяся функция F(x) в точках х 1, х 2, …, х nимеет значения Maple 9510 в математике физике и образовании - изображение 577. Будем рассматривать совокупность значений функции f(x) и функции F(x) как координаты двух точек n-мерного пространства. С учетом этого задача приближения функции может быть определена другим образом: найти такую функцию F(x) заданного вида, чтобы расстояние между точками M(f 1 , f 2 , …, f n ) и Maple 9510 в математике физике и образовании - изображение 578было наименьшим. Воспользовавшись метрикой евклидова пространства, приходим к требованию, чтобы величина

была наименьшей что соответствует следующему 512 то есть сумма - фото 579

была наименьшей, что соответствует следующему:

512 то есть сумма квадратов должна быть наименьшей Задачу приближения - фото 580 (5.12)

то есть сумма квадратов должна быть наименьшей. Задачу приближения функции f(х) теперь можно формулировать иначе. Для функция f(х), заданной таблично, необходимо найти функцию F(x) определенного вида так, чтобы сумма квадратов (5.12) была наименьшей.

Выбор класса приближающихся функций определяется характером поведения точечного графика функции f. Это могут быть линейная зависимость, любые элементарные функции и т.д.

Практически вид приближающей функции F можно определить, построив точечный график функции f(х), а затем построить плавную кривую, по возможности наилучшим образом отражающую характер расположения точек. По полученной кривой выбирают вид приближающей функции.

Когда вид приближающей функции выбран, то последующая задача сводится к отысканию значений параметров функции. Рассмотрим метод нахождения параметров приближающей функции в общем виде на примере приближающей функции с тремя параметрами f=F(x, с, b, с). Тогда имеем

513 Сумма квадратов разностей соответствующих значений функций f и F будет - фото 581 (5.13)

Сумма квадратов разностей соответствующих значений функций f и F будет иметь вид:

514 Сумма 514 является функцией φa b с трех переменных a b с - фото 582 (5.14)

Сумма (5.14) является функцией φ(a, b, с) трех переменных a, b, с. Задача сводится к отысканию ее минимума. Для этого используем необходимое условие экстремума:

Maple 9510 в математике физике и образовании - изображение 583

или

515 Решив эту систему 515 трех уравнений с тремя неизвестными - фото 584 (5.15)

Решив эту систему (5.15) трех уравнений с тремя неизвестными относительно параметров a, b , с, получим конкретный вид искомой функции F(x, a, b, с) . Изменение количества параметров не приведет к изменению сущности метода, а отразится только на количестве уравнений в системе (5.15).

Как следует из начальных условий, найденные значения функции F(x, а, b, с) в точках x 1, х 2, …, х nбудут отличаться от табличных значений y 1 , у 2 , …, у n . Значение разностей

f i-F(x i, a, b, c,) = ε i, i=1, 2, …, n

будет определять отклонение измеренных значений f от вычисленных по формуле (5.14). Для найденной эмпирической формулы (5.14) в соответствии с исходными табличными данными можно найти сумму квадратов отклонений

картинка 585 (5.16)

Она, в соответствии с принципом наименьших квадратов для заданного вида приближающей функции и ее найденных параметров (параметры a, b, с ), должна быть наименьшей. Из двух разных приближений одной и той же табличной функции, следуя принципу наименьших квадратов, лучшим нужно считать тот, для которого сумма (5.16) имеет меньшее значение.

5.6.10. Тригонометрическая интерполяция рядами Фурье

При тригонометрической интерполяции используются тригонометрические полиномы — линейные комбинации тригонометрических функций sin(nx) и cos(nx). Этот вид интерполирования применяется для процессов, которые отражают циклические процессы, связанные с периодическими функциями [52–54]. Известно, что такие функции удобно представлять в виде тригонометрического ряда или его частичной суммы с достаточной степенью точности.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Владимир Дьяконов читать все книги автора по порядку

Владимир Дьяконов - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Maple 9.5/10 в математике, физике и образовании отзывы


Отзывы читателей о книге Maple 9.5/10 в математике, физике и образовании, автор: Владимир Дьяконов. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x