Владимир Дьяконов - Maple 9.5/10 в математике, физике и образовании

Тут можно читать онлайн Владимир Дьяконов - Maple 9.5/10 в математике, физике и образовании - бесплатно ознакомительный отрывок. Жанр: Математика, издательство СОЛОН-Пресс, год 2006. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Maple 9.5/10 в математике, физике и образовании
  • Автор:
  • Жанр:
  • Издательство:
    СОЛОН-Пресс
  • Год:
    2006
  • Город:
    Москва
  • ISBN:
    5-98003-258-4
  • Рейтинг:
    3.67/5. Голосов: 91
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Владимир Дьяконов - Maple 9.5/10 в математике, физике и образовании краткое содержание

Maple 9.5/10 в математике, физике и образовании - описание и краткое содержание, автор Владимир Дьяконов, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

Книга является справочником и руководством пользователя по новейшим системам символьной (аналитической) математики — Maple 9.5 и Maple 10. Это признанные мировые лидеры в области аналитических вычислений, прошедшие серьезную сертификацию в этой области. Кратко описан интерфейс систем и подробно их обширные возможности в математике, физике и образовании. Особое внимание уделено технике практических вычислений и визуализации их результатов, а также решению дифференциальных уравнений различного типа. Описаны средства символьных и численных вычислений, графические и программные возможности систем, пакеты их расширения, маплеты и практика применения Maple в математических и физических расчетах. Прилагаемый CD-ROM содержит более 340 файлов с примерами вычислений. Для научно-технических работников, студентов и преподавателей университетов и вузов.

Maple 9.5/10 в математике, физике и образовании - читать онлайн бесплатно ознакомительный отрывок

Maple 9.5/10 в математике, физике и образовании - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Владимир Дьяконов
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Приведем еще несколько примеров использования функции Interp:

> Interp([2,5,6], [9,8,3], х) mod 11;

8х² + 6х + 9

> alias(alpha=RootOf(х^4+х+1));

α

> a := Interp([0,1,alpha],[alpha,alpha^2,alpha^3], x) mod 2;

a := x² + (α² + α + 1)x + α

5.8. Применение числовой аппроксимации функций

5.8.1. Состав пакета numapprox

Для более глубоких и продвинутых операций аппроксимации служит специальный пакет расширения numapprox. Этот пакет содержит небольшое число безусловно очень важных функций:

> with(numapprox);

[chebdeg, chebmult, chebpade, chebsort, chebyshev, confracform, hermite_pade, hornerform, infnorm, laurent, minimax, pade, remez]

В их числе функции интерполяции и аппроксимации полиномами Чебышева, рядом Тейлора, отношением полиномов (аппроксимация Паде) и др. Все они широко применяются не только в фундаментальной математике, но и при решении многих прикладных задач. Рассмотрим их, начиная с функций аппроксимации аналитических зависимостей.

5.8.2. Разложение функции в ряд Лорана

Для разложения функции f в ряд Лорана с порядком n в окрестности точки x=а (или x=0) служит функция laurent:

laurent(f, х=а, n)

laurent(f, x, n)

Представленный ниже пример иллюстрирует реализацию разложения в ряд Лорана:

> laurent(f(х),х=0,4);

f(0) + D(f)(0)x + ½(D (2)(f)(0)x 2+ ⅙(D (3)(f)(0)x 3+ O(х 4)

> laurent(exp(х),х,5);

583 Падеаппроксимация аналитических функций Для аппроксимации - фото 609

5.8.3. Паде-аппроксимация аналитических функций

Для аппроксимации аналитических функций одной из лучших является Паде-аппроксимация, при которой заданная функция приближается отношением двух полиномов. Эта аппроксимация способна приблизить даже точки разрыва исходной функции с устремлениями ее значений в бесконечность (при нулях полинома знаменателя. Для осуществления такой аппроксимации используется функция pade:

pade(f, х=а, [m,n])

pade(f, х, [m,n])

Здесь f — аналитическое выражение или функция, x — переменная, относительно которой записывается аппроксимирующая функция, a — координата точки, относительно которой выполняется аппроксимация, m, n — максимальные степени полиномов числителя и знаменателя. Технику аппроксимации Паде непрерывной функции поясняет рис. 5.17.

Рис 517 Аппроксимация Паде для синусоидальной функции На рис 517 - фото 610

Рис. 5.17. Аппроксимация Паде для синусоидальной функции

На рис. 5.17 представлена аппроксимация синусоидальной функции, а также построены графики этой функции и аппроксимирующей функции. Под ними дан также график абсолютной погрешности для этого вида аппроксимации. Нетрудно заметить, что уже в интервале [-π, π] погрешность резко возрастает на концах интервала аппроксимации.

Важным достоинством Паде-аппроксимации является возможность довольно точного приближения разрывных функций. Это связано с тем, что нули знаменателя у аппроксимирующего выражения способны приближать разрывы функций, если на заданном интервале аппроксимации число разрывов конечно. На рис. 5.18 представлен пример Паде-аппроксимации функции tan(x) в интервале от -4,5 до 4,5, включающем два разрыва функции.

Рис 518 Аппроксимация Паде для разрывной функции тангенса Как видно из - фото 611

Рис. 5.18. Аппроксимация Паде для разрывной функции тангенса

Как видно из рис. 5.18, расхождение между функцией тангенса и ее аппроксимирующей функцией едва заметны лишь на краях интервала аппроксимации. Оба разрыва прекрасно приближаются аппроксимирующей функцией и никакого выброса погрешности в точках разрыва нет. Такой характер аппроксимации подтверждается и графиком погрешности, которая лишь на концах интервала аппроксимации [-4.0, 4.0] достигает значений 0,01 (около 1%).

5.8.4. Паде-аппроксимация с полиномами Чебышева

Для многих аналитических зависимостей хорошие результаты дает аппроксимация полиномами Чебышева. При ней более оптимальным является выбор узлов аппроксимации, что ведет к уменьшению погрешности аппроксимации.

В общем случае применяется Паде-аппроксимация, характерная представлением аппроксимирующей функции в виде отношения полиномов Чебышева. Она реализуется функциями chebpade:

chebpade(f, x=a..b, [m,n])

chebpade(f, x, [m,n])

chebpade(f, a..b, [m,n])

Здесь a..b задает отрезок аппроксимации, m и n — максимальные степени числителя и знаменателя полиномов Чебышева. Приведенный ниже пример показывает аппроксимацию Паде полиномами Чебышева для функции f=cos(x):

> Digits:=10:chebpade(cos(x),x=0..1,5);

0.8235847380 T(0, 2x-1) - 0.2322993716 T(1, 2 x-1) - 0.05371511462 T(2, 2x-1) + 0.002458235267 T(3, 2 х-1) + 0.0002821190574 T(4, 2x-1) - 0.7722229156 -5T(5, 2x-1)

> chebpade(cos(x),x=0..1,[2,3]);

(0.8162435876 T(0, 2x-1) - 0.1852356296 T(1, 2x-1) - 0.05170917481 T(2, 2x-1))/(T(0, 2x-1) + 0.06067214549 T(1, 2x-1) + 0.01097466398 T(2, 2x-1) + 0.0005311640964 T(3, 2 x-1))

5.8.5. Наилучшая минимаксная аппроксимация

Минимаксная аппроксимация отличается от Паде-аппроксимации минимизацией максимальной абсолютной погрешности во всем интервале аппроксимации. Она использует алгоритм Ремеза (см. ниже) и реализуется следующей функцией:

minimax(f, x=a..b, [m,n], w, 'maxerror')

minimax(f, a..b, [m,n], w, 'maxerror')

Здесь, помимо уже отмеченных параметров, w — процедура или выражение, maxerror — переменная, которой приписывается значение minimax-нормы. Ниже дан пример аппроксимации функции cos(x) в интервале [-3, 3]:

> minimax(cos(х),х=-3..3,[2,3],1,'minmax');

minimax 04621605601 586 Наилучшая минимаксная аппроксимация по - фото 612

> minimax;

.04621605601

5.8.6. Наилучшая минимаксная аппроксимация по алгоритму Ремеза

Для получения наилучшей полиномиальной аппроксимации используется алгоритм Ремеза, который реализует следующая функция:

remez(w, f, a, b, m, n, crit, 'maxerror')

Здесь w — процедура, представляющая функцию w(x) > 0 в интервале [a, b], f — процедура, представляющая аппроксимируемую функцию f(х), а и b — числа, задающие интервал аппроксимации [a, b], m и n — степени числителя и знаменателя аппроксимирующей функции, crit — массив, индексированный от 1 до m + n + 2 и представляющий набор оценок в критических точках (то есть точек максимума/минимума кривых погрешности), maxerror — имя переменной, которой присваивается минимаксная норма w abs(f-r).

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Владимир Дьяконов читать все книги автора по порядку

Владимир Дьяконов - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Maple 9.5/10 в математике, физике и образовании отзывы


Отзывы читателей о книге Maple 9.5/10 в математике, физике и образовании, автор: Владимир Дьяконов. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x