Владимир Дьяконов - Maple 9.5/10 в математике, физике и образовании

Тут можно читать онлайн Владимир Дьяконов - Maple 9.5/10 в математике, физике и образовании - бесплатно ознакомительный отрывок. Жанр: Математика, издательство СОЛОН-Пресс, год 2006. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Maple 9.5/10 в математике, физике и образовании
  • Автор:
  • Жанр:
  • Издательство:
    СОЛОН-Пресс
  • Год:
    2006
  • Город:
    Москва
  • ISBN:
    5-98003-258-4
  • Рейтинг:
    3.67/5. Голосов: 91
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Владимир Дьяконов - Maple 9.5/10 в математике, физике и образовании краткое содержание

Maple 9.5/10 в математике, физике и образовании - описание и краткое содержание, автор Владимир Дьяконов, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

Книга является справочником и руководством пользователя по новейшим системам символьной (аналитической) математики — Maple 9.5 и Maple 10. Это признанные мировые лидеры в области аналитических вычислений, прошедшие серьезную сертификацию в этой области. Кратко описан интерфейс систем и подробно их обширные возможности в математике, физике и образовании. Особое внимание уделено технике практических вычислений и визуализации их результатов, а также решению дифференциальных уравнений различного типа. Описаны средства символьных и численных вычислений, графические и программные возможности систем, пакеты их расширения, маплеты и практика применения Maple в математических и физических расчетах. Прилагаемый CD-ROM содержит более 340 файлов с примерами вычислений. Для научно-технических работников, студентов и преподавателей университетов и вузов.

Maple 9.5/10 в математике, физике и образовании - читать онлайн бесплатно ознакомительный отрывок

Maple 9.5/10 в математике, физике и образовании - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Владимир Дьяконов
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Следующий пример иллюстрирует применение данной функции для аппроксимации функции erf(x):

> Digits:=12:w:=proc(х) 1.0 end;

w:= proc(x) 1.0 end proc

> f:=proc(x) evalf(erf(x)) end;

f: = proc(x) evalf (erf (x)) end proc

> crit:=array(1..7, [0, .1,.25,.5,.75,.9,1.]);

crit := [0, .1, .25, .5, .75, .9, 1.]

> remez(w,f,0,1,5,0,crit,'maxerror');

x→0.0000221268863 + (1.12678937620 + (0.018447321509 + (-0.453446232421 + (0.141246775527 + 0.00966355213050 x) x) x) x) x

> maxerror;

0.0000221268894463

5.8.7. Другие функции пакета numapprox

Отметим назначение других функций пакета numapprox:

chebdeg(p) — возвращает степень полинома Чебышева р;

chebmult(p, q) — умножение полиномов Чебышева p и q;

chebsort(e) — сортирует элементы ряда Чебышева;

confracform(r) — преобразует рациональное выражение r в цепную дробь;

confracform(r, х) — преобразует рациональное выражение r в цепную дробь с независимой переменной х;

hornerform(r) — преобразует рациональное выражение r в форму Горнера;

hornerform(r, х) — преобразует рациональное выражение r в форму Горнера с независимой переменной х;

infnorm(f, x=a…b, 'xmax') — возвращает L-бесконечную норму функции на отрезке х[а, b];

infnorm(f, a…b, "xmax") — возвращает L-бесконечную норму функции на отрезке [ а, b ].

Действие этих функций очевидно и читатель может самостоятельно опробовать их в работе.

5.9. Пакет приближения кривых CurveFitting

5.9.1. Общая характеристика пакета Curve Fitting

Появившийся еще в Maple 7 пакет приближения кривых CurveFitting весьма полезен тем, кто занимается столь распространенной задачей, как приближение кривых. Он содержит ряд функций:

> with(CurveFitting);

[BSpline, BSplineCurve, Interactive, LeastSquares, PolynomialInterpolation, RationalInterpolation, Spline, ThieleInterpolation]

Доступ к функциям пакета возможен с помощью конструкций:

CurveFitting[function](arguments) function(arguments)

Число функций пакета невелико и все они описаны ниже.

5.9.2. Функция вычисления В-сплайнов Bsline

Функция BSpline(k, v, opt) служит для вычисления В-сплайнов. В отличии от обычных сплайнов, у которых точками стыковки сплайн-функций являются узловые точки, В-сплайны позволяют получить стыковку в произвольно заданных точках. Указанная функция имеет следующие параметры: k — порядок сплайна (целое число), v — имя и opt — параметр в виде knots=knotlist, где knotlist — список из k+ 1 элементов алгебраического типа. Используя функцию CurveFitting[BSplineCurve] можно строить кривые В-сплайнов. Примеры применения этой функции представлены ниже:

> BSpline(3, х);

Maple 9510 в математике физике и образовании - изображение 613

> BSpline(2, х, knots=[0,a,2]);

Maple 9510 в математике физике и образовании - изображение 614

Как нетрудно заметить из этих примеров, функция Bspline возвращает результат в виде кусочных функций типа piecewise.

5.9.3. Функция построения B-сплайновых кривых BsplineCurve

Функция BsplineCurve служит для построения кривых B-сплайнов. Она может использоваться в формах:

BSplineCurve(xydata, v, opts)

BSplineCurve(xdata, ydata, v, opts)

Здесь:

xydata — список, массив или матрица точек в форме [[х1,у1],[х2,у2],…,[хn,уn]];

xdata — список, массив или вектор значений независимой переменной [х1,х2,…,хn];

ydata — список, массив или вектор значений зависимой переменной в форме [у1,у2,…,уn];

v — имя независимой переменной;

opts — не обязательный параметр в форме одного или более выражений вида order=k или knots=knotlist.

Примеры применения функции BSplineCurve с порядком, заданным по умолчанию и с третьим порядком (кубический B-сплайн), представлены на рис. 5.19.

Следует отметить, что при малом числе точек стыковки аппроксимация B-сплайнами дает невысокую точность, что хорошо видно из рис. 5.19.

Рис 519 Применение функции BSplineCurve 594 Сравнение полиномиальной и - фото 615

Рис. 5.19. Применение функции BSplineCurve

5.9.4. Сравнение полиномиальной и сплайновой аппроксимаций

Когда аппроксимируется гладкая функция, представленная парами данных с равномерным расположением узлом, то данные как полиномиальной, так и сплайновой аппроксимаций различаются незначительно. В этом случае применение куда более сложной сплайновой аппроксимации, как правило, кажется мало обоснованным.

Однако если точки данных расположены неравномерно, то применение полиномиальной аппроксимации может оказаться совершенно неприемлемым. Это отчетливо показывает пример, представленный на рис. 5.20. Здесь задана на первый взгляд (судя по расположению точек) не слишком сложная и чуть колебательная зависимость. Однако полиномиальная аппроксимация (представлена тонкой кривой), особенно в начале — в интервале первых трех точек, дает явно ошибочные сильные выбросы. А вот сплайновая аппроксимация (показана более жирном линией) ведет себя куда более приемлемо.

Рис 520 Сравнение полиномиальной и сплайновой аппроксимаций для функции - фото 616

Рис. 5.20. Сравнение полиномиальной и сплайновой аппроксимаций для функции, заданной парами данных при неравномерном расположении узлов

Причина лучшего поведения сплайновой аппроксимации здесь вполне очевидна — напоминая поведение гибкой линейки, сплайновая функция эффективно сглаживает выбросы кривой в промежутках между точками.

5.9.5.Сплайновая аппроксимация при большом числе узлов

При большом числе узлов (десятки-сотни и выше) данные представленные точками выглядят нередко не представительно. Например, на рис. 5.21 показан документ, иллюстрирующий сплайновую аппроксимацию функции синуса, представленной 31 отсчетом, но без вывода графика сплайновой функции. Несмотря на равномерное расположение узлов по графику точек невозможно определить, что это функция синуса.

Рис 521 Пример представления функции синуса 31 узловыми точками при - фото 617

Рис. 5.21 Пример представления функции синуса 31 узловыми точками при равномерном расположении узлов

Рисунок 5.22 отличается от рис. 5.21 только построением сплайновой функции, представленной графическим объектом g1 (на рис. 5.19 он исключен из параметров функции display). После построения графика сплайновой аппроксимирующей функции становится вполне ясным, что точки представляют функцию синуса, которая прекрасно представляется отрезками полиномов сплайн-функции.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Владимир Дьяконов читать все книги автора по порядку

Владимир Дьяконов - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Maple 9.5/10 в математике, физике и образовании отзывы


Отзывы читателей о книге Maple 9.5/10 в математике, физике и образовании, автор: Владимир Дьяконов. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x