Альберт Рывкин - Сборник задач по математике с решениями для поступающих в вузы

Тут можно читать онлайн Альберт Рывкин - Сборник задач по математике с решениями для поступающих в вузы - бесплатно ознакомительный отрывок. Жанр: Математика, издательство «ОНИКС 21 век» «Мир и Образование», год 2003. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Сборник задач по математике с решениями для поступающих в вузы
  • Автор:
  • Жанр:
  • Издательство:
    «ОНИКС 21 век» «Мир и Образование»
  • Год:
    2003
  • Город:
    Москва
  • ISBN:
    5-329-00766-6, 5-94666-080-2
  • Рейтинг:
    3.67/5. Голосов: 91
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Альберт Рывкин - Сборник задач по математике с решениями для поступающих в вузы краткое содержание

Сборник задач по математике с решениями для поступающих в вузы - описание и краткое содержание, автор Альберт Рывкин, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

Основу задачника составили варианты письменных работ по математике, предлагавшихся на вступительных экзаменах в ряде ведущих вузов Москвы.

Сборник содержит около 500 типовых задач. K каждой задаче дается до трех указаний, помогающих найти правильный путь к решению, а затем приводится подробное решение.

Пособие может использоваться при самостоятельной подготовке к экзаменам в вуз, а также на подготовительных отделениях и курсах.

Сборник задач по математике с решениями для поступающих в вузы - читать онлайн бесплатно ознакомительный отрывок

Сборник задач по математике с решениями для поступающих в вузы - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Альберт Рывкин
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать
314Достроить усеченную пирамиду до полной и рассмотреть высоты пирамид - фото 338

3.14.Достроить усеченную пирамиду до полной и рассмотреть высоты пирамид, имеющих три основания, о которых идет речь в условии.

3.15.Построить угол между скрещивающимися прямыми можно, если параллельно перенести их так, чтобы они проходили через одну точку. В качестве такой точки удобно выбрать вершину А основания пирамиды. Если мы достроим треугольник АВС , лежащий в основании, до параллелограмма АВСЕ (рисунок сделайте самостоятельно), то угол DАЕ будет искомым. Образовавшаяся в результате четырехугольная пирамида будет состоять из ребер данной длины, за исключением ребра .

3.16.Тетраэдр разбивается на две пирамиды с общим основанием — плоскостью сечения. Данное отношение объемов позволяет найти отношение высот этих пирамид и, следовательно, отношение синусов искомых углов.

3.17.Условия задачи отражены на рис. I.3.17. Нас интересует отношение площадей треугольников DАМ и DМS , в то время как все известные элементы сосредоточены в плоскости KSЕ . Поэтому нужно связать элементы треугольников DАМ и DМS с элементами треугольника KSЕ .

318 Использовать условие задачи согласно которому высота пирамиды опущенная - фото 339

3.18. Использовать условие задачи, согласно которому высота пирамиды, опущенная из вершины D , проходит через точку пересечения высот основания АВС , с тем, чтобы доказать, что треугольники АDВ и АDС прямоугольные.

3.19.В пирамиде SАВС (рис. I.3.19) равнобедренные треугольники АSВ и АСВ равны. Следовательно, проведенные в них высоты из вершин S и С упадут в точку D — середину AB .

320Если верхний из двух равных треугольников лежащих один на другом в - фото 340

3.20.Если верхний из двух равных треугольников, лежащих один на другом в плоскости, начать вращать вокруг из общей стороны, то образованный ими двугранный угол может быть как острым, так и тупым. Поэтому придется рассмотреть два случая.

3.21. Если в основании АВС пирамиды провести высоту ВD , то отрезок SD разделит угол АSС пополам.

3.22.Покажите, что отрезки AB и CD взаимно перпендикулярны. Центр описанного шара лежит на их общем перпендикуляре KM , где K — середина СD , M — середина AB .

3.23. Расстояние от основания высоты до бокового ребра измеряется отрезком перпендикуляра, опущенного на боковое ребро. Чтобы связать участвующие в задаче величины, нужно измерить двугранный угол α линейным углом, построенным в точке бокового ребра, которая является основанием этого перпендикуляра. Следовательно, придется построить сечение пирамиды, проходящее через основание высоты и перпендикулярное к боковому ребру пирамиды.

3.24.Чтобы в сечении получился квадрат, плоскость сечения необходимо провести так, чтобы она пересекала все четыре грани пирамиды (иначе мы получили бы в сечении треугольник). Докажите, что если KLNM — квадрат (рис. I.3.24), то плоскость KLNM параллельна двум скрещивающимся прямым AB и СD .

325Для того чтобы найти наиболее рациональное решение задачи поставьте - фото 341

3.25.Для того чтобы найти наиболее рациональное решение задачи, поставьте пирамиду на одну из боковых граней (рис. I.3.25), а затем примените сравнение объемов.

326Вписать в пирамиду куб значит расположить его так чтобы нижнее основание - фото 342

3.26.Вписать в пирамиду куб значит расположить его так, чтобы нижнее основание куба лежало на основании пирамиды, а верхнее основание куба было вписано в треугольник, полученный в горизонтальном сечении пирамиды (рис. I.3.26).

327K решению этой задачи удобно подойти аналитически рассмотрев общий - фото 343

3.27.K решению этой задачи удобно подойти аналитически, рассмотрев общий случай. Предположим, что в сечении образовался некоторый треугольник со сторонами а , b и с . Полезно рассмотреть пирамиду, в основании которой лежит этот треугольник, а вершиной является вершина трехгранного угла.

3.28.По условию задачи попарно равны именно те ребра тетраэдра, которые лежат на скрещивающихся прямых. Использовать это условие можно, если расположить тетраэдр так, чтобы ребро AB лежало в горизонтальной плоскости P , а ребро было параллельно этой плоскости.

3.29.Нужно построить расстояние между прямыми AB и CD . Для этого через один из отрезков, например через AB , надо провести плоскость P , параллельную CD .

Решение естественно начать с построения плоскости P , проходящей через одно ребро ( AB ) и параллельной другому ( CD ). Удобный чертеж можно получить, повернув пирамиду вокруг AB так, чтобы плоскость P стала горизонтальной.

Далее нужно построить угол между скрещивающимися прямыми AB и CD . Напомним, что для этого достаточно построить прямую, пересекающую одну из них и параллельную другой.

3.30.Плоскость А 1 ВС отсекает от призмы четырехугольную пирамиду. Расположим ее так, как показано на рис. I.3.30. То, что в эту пирамиду вписан шар радиусом R , означает, что в треугольники В 1 А 1 С 1 Е вписаны окружности радиусом R .

331В силу соображений симметрии центр шара о котором идет речь в задаче - фото 344

3.31.В силу соображений симметрии центр шара, о котором идет речь в задаче, совпадает с центром шара, вписанного в правильный тетраэдр.

3.32.Если куб преобразовать подобно, выбрав в качестве центра подобия точку О , то диагональ, проходящая через точку О , сохранит свое направление в пространстве.

3.33.Составным элементом этой задачи является соотношение, связывающее разность углов треугольника, прилегающих к некоторой его стороне, с углом между этой стороной и биссектрисой противоположного угла.

3.34.Диагонали, расстояние между которыми нужно найти, будут лежать на скрещивающихся прямых. Расстояние между скрещивающимися прямыми равно расстоянию между определяемыми ими параллельными плоскостями.

3.35.Так как сфера с центром в точке О расположена симметрично относительно всех трех ребер, выходящих из А , то О должна лежать на диагонали куба.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Альберт Рывкин читать все книги автора по порядку

Альберт Рывкин - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Сборник задач по математике с решениями для поступающих в вузы отзывы


Отзывы читателей о книге Сборник задач по математике с решениями для поступающих в вузы, автор: Альберт Рывкин. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x