Марио Ливио - φ – Число Бога. Золотое сечение – формула мироздания
- Название:φ – Число Бога. Золотое сечение – формула мироздания
- Автор:
- Жанр:
- Издательство:Литагент «АСТ»c9a05514-1ce6-11e2-86b3-b737ee03444a
- Год:2015
- Город:Москва
- ISBN:978-5-17-094497-2
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Марио Ливио - φ – Число Бога. Золотое сечение – формула мироздания краткое содержание
Как только не называли это загадочное число, которое математики обозначают буквой φ: и золотым сечением, и числом Бога, и божественной пропорцией. Оно играет важнейшую роль и в геометрии живой природы, и в творениях человека, его закладывают в основу произведений живописи, скульптуры и архитектуры, мало того – ему посвящают приключенческие романы! Но заслужена ли подобная слава? Что здесь правда, а что не совсем, какова история Золотого сечения в науке и культуре, и чем вызван такой интерес к простому геометрическому соотношению, решил выяснить известный американский астрофизик и популяризатор науки Марио Ливио. Увлекательное расследование привело к неожиданным результатам…
Увлекательный сюжет и нетривиальная развязка, убедительная логика и независимость суждений, малоизвестные факты из истории науки и неожиданные сопоставления – вот что делает эту научно-популярную книгу настоящим детективом и несомненным бестселлером.
φ – Число Бога. Золотое сечение – формула мироздания - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Представьте себе, что мы хотим вычислить значение вот такого необычного выражения, состоящего из бесконечного числа квадратных корней:

Как тут вообще подступиться к ответу? Есть один довольно-таки громоздкий метод: сначала вычислить, что даст нам √2=1,414…, затем вычислить и т. д., уповая на то, что рано или поздно значения начнут быстро сходиться к какому-то числу. Но ведь, возможно, есть и другой метод вычисления, проще и изящнее. Обозначим искомую величину х . Тогда у нас получается

Теперь возведем в квадрат обе части равенства. В левой получим х 2, а при возведении в квадрат правой части мы просто уберем тот квадратный корень, под которым стоит все выражение (по определению квадратного корня), и получим

Однако обратите внимание, что поскольку выражение в правой части нашего равенства тянется до бесконечности, оно равно нашему первоначальному х . Поэтому у нас получается квадратное уравнение: х 2 = 1 + х . Но ведь это и есть равенство, которое описывает золотое сечение! А следовательно, мы выяснили, что наше бесконечное равенство в точности равно числу φ!
А теперь рассмотрим совсем другое бесконечное выражение, на сей раз – с дробями:

Это особое математическое понятие, известное как цепная или непрерывная дробь; такие дроби довольно часто используются в теории чисел. Как же нам подсчитать значение этой непрерывной дроби? В принципе, можно понемногу отсечь единицы снизу доверху, надеясь нащупать предел, к которому сходится непрерывная дробь. Однако опыт уже научил нас, что лучше начать с того, чтобы приравнять это выражение к х . Итак,

Однако отметим, что поскольку непрерывная дробь тянется бесконечно, знаменатель второго слагаемого в правой части равен х . И вот мы получаем выражение
х = 1+ 1/ х
Умножим обе части на х – и получим х 2 = 1 + х , а это опять же равенство, определяющее золотое сечение! Смотрите-ка, удивительная непрерывная дробь тоже равна числу φ. Об этом свойстве тоже упоминается в стихотворении Пола С. Брукманса:
Цепная дробь получится красивой!
Она из единиц, и единиц и… снова единиц!
И вроде проще нет ее: ни отклонений, ни извивов,
Но мозг кипит, и я
Едва
Держусь у разума границ.
Поскольку непрерывная дробь, соответствующая золотому сечению, состоит из одних единиц, она очень медленно сходится. В этом отношении золотое сечение «труднее» выразить в виде непрерывной дроби, нежели любое другое иррациональное число: воистину оно самое иррациональное из всех иррациональных чисел!

Рис. 26
Теперь оставим бесконечные выражения и обратимся к золотому прямоугольнику с рис. 26. Длины сторон этого прямоугольника соотносятся друг с другом в соответствии с золотым сечением. Теперь предположим, что мы отрезаем от этого прямоугольника квадрат, как показано на рисунке. У нас останется прямоугольник поменьше, и это тоже будет золотой прямоугольник. Габариты этого «производного» прямоугольника меньше, чем у «исходного», с коэффициентом ровно φ. Теперь отрежем квадрат от «производного» золотого прямоугольника – и у нас получится еще один золотой прямоугольник с габаритами, которые опять же меньше с коэффициентом φ. Этот процесс можно продолжать до бесконечности, создавая золотые прямоугольники все меньше и меньше (каждый раз их габариты «сдуваются» на множитель φ). Если бы мы изучали все уменьшающиеся по размеру золотые прямоугольники в лупу, причем брали бы линзу все сильнее и сильнее, они были бы все одинаковые. Золотой прямоугольник – единственный прямоугольник, обладающий таким свойством, что если отрезать от него квадрат, получится подобный прямоугольник. Проведите диагонали в любой паре из «исходного» и «производного» треугольника из этой череды, как на рис. 26, и они все пересекутся в одной точке. К этой недостижимой точке и сходятся уменьшающиеся прямоугольники. Благодаря «божественным» качествам, приписываемым золотому сечению, математик Клиффорд А. Пиковер предложил назвать эту точку «Оком Господним».
Если у вас не идет кругом голова при одной мысли, что во всех этих математических обстоятельствах, таких разных, мы приходим к одному и тому же числу φ, возьмите простенький карманный калькулятор, и я покажу вам потрясающий фокус. Выберите два любых числа (число разрядов не имеет значения) и запишите их подряд. Теперь при помощи калькулятора (или в уме) составьте (и запишите) третье число, сумму первых двух. Теперь составьте четвертое число – прибавив к получившейся сумме третье, пятое – прибавив четвертое к третьему, шестое – сложив пятое с четвертым и т. д., пока у вас не получится последовательность из двадцати чисел. Скажем, если первыми числами у вас были 2 и 5, у вас должна получиться последовательность 2, 5, 7, 12, 19, 31, 50, 81, 131… Теперь при помощи калькулятора поделите двадцатое число на девятнадцатое. Узнаете результат? Разумеется, это φ. К этому фокусу и его «разоблачению» я вернусь в главе 5.
Мрачное Средневековье
Когда Евклид в «Началах» давал определение золотого сечения, его интересовала в первую очередь геометрическая интерпретация этого понятия и его применение в построении правильного пятиугольника и некоторых платоновых тел. Греческие математики следующих столетий вывели еще несколько геометрических результатов, связанных с золотым сечением. Например, в дополнительной книге к «Началам» Евклида (ее иногда так и называют книгой XIV «Начал») содержится важная теорема о додекаэдре и икосаэдре, вписанных в одну и ту же сферу. Текст книги XIV приписывают Гипсиклу Александрийскому, который, вероятно, жил во II веке н. э., однако считается, что в ней содержатся также теоремы Аполлония Пергского (ок. 262–190 до н. э.), одного из трех светил Золотого Века греческой математики (приблизительно 300–200 годы до н. э.) наряду с Евклидом и Архимедом. После этого к изучению золотого сечения возвращались лишь от случая к случаю, и эти исследования были связаны в основном с именами Герона (I в. н. э.), Птолемея (II в. н. э.) и Паппа (IV в. н. э.). Герон в своей «Метрике» предлагает формулы для приближенного вычисления площади поверхности правильного пятиугольника и правильного десятиугольника и объема икосаэдра и додекаэдра, однако умалчивает о том, как эти формулы были получены.
Читать дальшеИнтервал:
Закладка: