Игорь Беляев - Древнеарийская философия том 1 и том 2
- Название:Древнеарийская философия том 1 и том 2
- Автор:
- Жанр:
- Издательство:Фонд развития и поддержки следственных органов, Журнал «Национальная безопасность и геополитика России»
- Год:2008
- Город:Москва
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Игорь Беляев - Древнеарийская философия том 1 и том 2 краткое содержание
Ни для кого не является секретом, что не так давно официальная точка зрения на вопрос происхождения мира была такова, что окружающий мир считался Сотворённым Богом. Собственно говоря, она и ныне встречается в любой религии.
Правда, в наше атеистическое время многие с усмешкой относятся к религиям, считая их предрассудками. Впрочем, времена меняются, и недавние атеисты встречаются среди представителей многочисленных религиозных конфессий.
Вдобавок, беспристрастный анализ внутреннего содержания логических структур религий приводит к весьма серьёзному и нестандартному выводу. Он заключается в том, что лежащие в основе любой религиозной философии и логики вовсе не являются нагромождением невежества, не могущего объяснить многие ежедневные нюансы нашей жизни.
Оказывается, что, с фундаментально глубинной позиции, все религии при поверхностном расхождении друг с другом внутренне оказываются в целом не только непротиворечивыми, но и сводятся к одной единственной схеме. И, как ни странно покажется такое на первый взгляд, первые упоминания о данной схеме затерялись в столь глубокой и седой древности, о которой человеческая память не смогла оставить даже самых смутных воспоминаний.
Она представляет собой древнеарийскую философию, великую мудрость седых тысячелетий, первоначально изложенную в священных книгах древних ариев – Ведах, Авесте, Ригведе и Велесовой книге. Ей посвящено уже великое множество работ, и данное произведение, конечно же, как оно следует, хотя бы из его названия, является одной из капелек данного бескрайнего океана.
В основном настоящий том посвящён изложению математических основ древнеарийской философии, и некоторых наиболее общих следствий из неё. С чисто научных позиций рассматриваются тайны вечных вопросов Бытия, смысла жизни и наших взаимоотношений с Мирозданием.
Одновременно показывается картина кризиса современной науки, отрицающей Бога и Сотворение Им окружающего мира. На фоне такого кризиса демонстрируются возможности древнего знания при анализе некоторых важных естественнонаучных проблем, являющихся камнем преткновения для учёных, свысока говорящих о том, что вера в Бога является предрассудком, подлежащим искоренению.
При написании настоящей книги автор старался уделять большое внимание доступности и простоте изложения материала. Он надеется, что это ему, пусть даже и частично, но удалось.
Древнеарийская философия том 1 и том 2 - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
При трансформации пятого слагаемого третьего выражения цепочки преобразований (ФМ2.2) использовалась третья формула блока формул (ФМ1.6), и потому его знак противоположен знаку пятого слагаемого четвёртого выражения цепочки преобразований (ФМ2.2). Пятое выражение цепочки преобразований (ФМ2.2) получается после сортировки слагаемых четвёртого выражения цепочки преобразований (ФМ2.2) по принципу является однотипности компонент тензооктаниона.
Условие калибровки. Особый интерес представляет первое слагаемое пятого выражения цепочки преобразований (ФМ2.2). Оно является временной ковариантной компонентой и в векторном виде задаётся формулой (ФМ2.3).
(ФМ2.3)
В современной электродинамике подобное выражение рассматривается как «условие калибровки» или «условие Лоренца» . Оно сохраняется при смене систем отчёта, и потому считается отражением «калибровочной инвариантности» .
Равенство условия калибровки 0 (нулю) сопоставляется вакууму. Иное условие калибровки или «обобщённое условие Лоренца» описывает отклик окружения рассматриваемой системы в ходе воздействия на него.
В современной же электродинамике фиксация условия калибровки позволяет выбирать тип решения её уравнений из числа возможных. Конечно же, такой взгляд не проливает свет на физическую сущность условий калибровки, и, в отличие от электродинамики, основанной на древнеарийской философии, не позволяет действовать осмысленно.
Вектора напряжённостей. Объединим первое и пятое выражение цепочки преобразований (ФМ2.2). Данный шаг позволит ввести «тензооктанион напряжённостей электромагнитного поля» , задаваемый формулой (ФМ2.4)
(ФМ2.4)
Второе и третье слагаемое правой части формулы (ФМ2.4) имеют аналоги в современной электродинамике. В ней «формула для вектора напряжённости электрического поля» и «формула для вектора напряжённости магнитного поля» имеют вид, соответственно, первой формулы блока формул (ФМ2.5) и второй формулы блока формул (ФМ2.5).
(ФМ2.5)
В третьей и четвёртой формулах блока формул (ФМ2.5) записаны аналогичные определения для векторов напряжённостей электрического и магнитного полей в алгебре тензооктанионов. Исходя из их содержания, легко прийти к выводу, что формулу (ФМ2.4) можно переписать как формулу (ФМ2.6).
(ФМ2.6)
В результате, вектор напряжённостей электрического поля E представляет собой ковариантный вектор, а вектор напряжённостей H магнитного поля, соответственно, контравариантный вектор. Надо сказать, что в современной электродинамике всё обстоит с точностью наоборот, и там контравариантным вектором является вектор напряжённостей электрического поля E , а ковариантным вектором оказывается вектор магнитного поля H .
В электродинамике, основанной на древнеарийской философии, объединяясь, вектора напряжённостей электрического и магнитного полей дают четырёхмерный ротор. В современной же электродинамики они являются компонентами «тензора электромагнитного поля» , записанного в выражении (ФМ2.7).
(ФМ2.7)
Символом i в выражении (ФМ2.7) обозначается мнимая единица алгебры комплексных чисел. Из вида выражения (ФМ2.7) видно, что тензор электромагнитного поля современной физики «избыточен».
Дело в том, что он содержит одну и ту же информацию о компонентах вектора напряжённостей электрического поля E и вектора напряжённостей магнитного поля H два раза. Органическим следствием данного обстоятельства являются проблемы теории поля в современной науке.
У тензора электромагнитного поля современной физики имеется аналог в подходе древнеарийской философии, основанной на алгебре тензооктанионов. Им является тонкая структура производной волновой функции по независимому контравариантному тензооктаниону, записанная в выражении (ФМ2.8).
(ФМ2.8)
Очевидно, что при помощи описанной выше операции упрощения, из выражения (ФМ2.8) может быть получен тензооктанион, записанный в правой части формулы (ФМ2.6). Кроме того, из вида выражения (ФМ2.8) понятно, что оно, в отличие от тензора электромагнитного поля сионистской физики, отнюдь не избыточно.
Из продемонстрированного вывода следует, что оператор дифференцирования по контравариантному независимому тензооктаниону состоит из дифференциального оператора дивергенции и дифференциального оператора ротора. В современной науке они используются отдельно, и их связь в алгебре тензооктанионов в операторе, идентифицируемом как связанный с наблюдением и измерением оператор познания 1, свидетельствует о мощи древнеарийской философии.
Уравнения Максвелла.Центральную роль в современной физике играют уравнения Максвелла. Создавая альтернативную теорию, основанную на древнеарийской философии, конечно же, нельзя оставить в стороне данный вопрос.
Формы Леви функции кармы. Вычислим форму Леви волновой функции. Определяя результат действия оператора дифференцирования по комплексно сопряжённому независимому контравариантному тензооктаниону на выражение правой части формулы (ФМ2.6), получаем цепочку преобразований (ФМ2.9).
(ФМ2.9)
Второе выражение цепочки преобразований (ФМ2.9) получается из первого выражения цепочки преобразований (ФМ2.9) при использовании второй формулы блока формул (ФМ1.21). Нужно также воспользоваться формулой (ФМ2.6).
Раскрытие скобок во втором выражении цепочки преобразований (ФМ2.9) и трёхкратное применение формулы (ФМ1.2) даёт третье выражение цепочки преобразований (ФМ2.9). К четвёртому выражению цепочки преобразований (ФМ2.9) приводит трансформация слагаемых третьего выражения цепочки преобразований (ФМ2.9).
При трансформации первого слагаемого третьего выражения цепочки преобразований (ФМ2.9) использовалась четвёртая формула блока формул (ФМ1.3), и потому его знак противоположен знаку первого слагаемого четвёртого выражения цепочки преобразований (ФМ2.9). Второе слагаемого третьего выражения цепочки преобразований (ФМ2.9) преобразовывалось при помощи восьмой формула блока формул (ФМ1.7), и его знак оказывается противоположен знаку второго слагаемого четвёртого выражения цепочки преобразований (ФМ2.9).
При трансформации третьего слагаемого третьего выражения цепочки преобразований (ФМ2.9) использовалась четвёртая формула блока формул (ФМ1.4), и потому его знак противоположен знаку третьего слагаемого четвёртого выражения цепочки преобразований (ФМ2.9). Четвёртое слагаемого третьего выражения цепочки преобразований (ФМ2.9) преобразовывалось при помощи третьей формулы блока формул (ФМ1.4), и его знак оказывается противоположен знаку четвёртого слагаемого четвёртого выражения цепочки преобразований (ФМ2.9).
Читать дальшеИнтервал:
Закладка: