Игорь Беляев - Древнеарийская философия том 1 и том 2

Тут можно читать онлайн Игорь Беляев - Древнеарийская философия том 1 и том 2 - бесплатно полную версию книги (целиком) без сокращений. Жанр: Философия, издательство Фонд развития и поддержки следственных органов, Журнал «Национальная безопасность и геополитика России», год 2008. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Древнеарийская философия том 1 и том 2
  • Автор:
  • Жанр:
  • Издательство:
    Фонд развития и поддержки следственных органов, Журнал «Национальная безопасность и геополитика России»
  • Год:
    2008
  • Город:
    Москва
  • ISBN:
    нет данных
  • Рейтинг:
    4.33/5. Голосов: 91
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Игорь Беляев - Древнеарийская философия том 1 и том 2 краткое содержание

Древнеарийская философия том 1 и том 2 - описание и краткое содержание, автор Игорь Беляев, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

Ни для кого не является секретом, что не так давно официальная точка зрения на вопрос происхождения мира была такова, что окружающий мир считался Сотворённым Богом. Собственно говоря, она и ныне встречается в любой религии.

Правда, в наше атеистическое время многие с усмешкой относятся к религиям, считая их предрассудками. Впрочем, времена меняются, и недавние атеисты встречаются среди представителей многочисленных религиозных конфессий.

Вдобавок, беспристрастный анализ внутреннего содержания логических структур религий приводит к весьма серьёзному и нестандартному выводу. Он заключается в том, что лежащие в основе любой религиозной философии и логики вовсе не являются нагромождением невежества, не могущего объяснить многие ежедневные нюансы нашей жизни.

Оказывается, что, с фундаментально глубинной позиции, все религии при поверхностном расхождении друг с другом внутренне оказываются в целом не только непротиворечивыми, но и сводятся к одной единственной схеме. И, как ни странно покажется такое на первый взгляд, первые упоминания о данной схеме затерялись в столь глубокой и седой древности, о которой человеческая память не смогла оставить даже самых смутных воспоминаний.

Она представляет собой древнеарийскую философию, великую мудрость седых тысячелетий, первоначально изложенную в священных книгах древних ариев – Ведах, Авесте, Ригведе и Велесовой книге. Ей посвящено уже великое множество работ, и данное произведение, конечно же, как оно следует, хотя бы из его названия, является одной из капелек данного бескрайнего океана.

В основном настоящий том посвящён изложению математических основ древнеарийской философии, и некоторых наиболее общих следствий из неё. С чисто научных позиций рассматриваются тайны вечных вопросов Бытия, смысла жизни и наших взаимоотношений с Мирозданием.

Одновременно показывается картина кризиса современной науки, отрицающей Бога и Сотворение Им окружающего мира. На фоне такого кризиса демонстрируются возможности древнего знания при анализе некоторых важных естественнонаучных проблем, являющихся камнем преткновения для учёных, свысока говорящих о том, что вера в Бога является предрассудком, подлежащим искоренению.

При написании настоящей книги автор старался уделять большое внимание доступности и простоте изложения материала. Он надеется, что это ему, пусть даже и частично, но удалось.


Древнеарийская философия том 1 и том 2 - читать онлайн бесплатно полную версию (весь текст целиком)

Древнеарийская философия том 1 и том 2 - читать книгу онлайн бесплатно, автор Игорь Беляев
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

(ФМ2.16)

Как и в современной физике, временная контравариантная компонента тензооктаниона тока принимается равной плотности распределения электрических зарядов r . Пространственная контравариантная компонента тензооктаниона тока определяется как отношение плотности распределения электрических токов I к скорости света в вакууме c .

Условие калибровки F позволяет определять реакцию среды на помещение в неё электрических зарядов. Данный факт фиксируется первой формулой блока формул (ФМ2.17) и второй формулой блока формул (ФМ2.17).

(ФМ2.17)

Воспользуемся формулой (ФМ2.16) и второй формулой блока формул (ФМ2.17) для окончательного преобразования выражения (ФМ2.15). В итоге, получим, что форма Леви волновой функции задаётся формулой (ФМ2.18).

(ФМ2.18)

Третья и четвёртая формулы блока формул (ФМ2.17) определяют «эффективный заряд» и «эффективный ток» , учитывающие реакцию среды на помещённые в неё электрические заряды и токи. Из них видно, что покоящийся электрический заряд экранируется противоположным по знаку ослабляющим зарядом, генерируемым им в окружающем его пространстве, а электрический ток вокруг себя создаёт текущие в том же направлении и усиливающие его токи.

Уравнения электромагнетизма. Объединим полученные два результата для формы Леви волновой функции. Приравнивая друг другу правые части формулы (ФМ2.10) и формулы (ФМ2.18), получаем соотношение (ФМ2.19).

(ФМ2.19)

Следующими шагами проводимых преобразований, разумеется, должно стать приведение подобных слагаемых в обеих частях соотношения (ФМ2.19) и последующее объединение в правой части соотношения (ФМ2.19) между собой одинаковых компонент тензооктанионов. С учётом третьей формулы блока формул (ФМ2.17) и четвёртой формулы блока формул (ФМ2.17) такой шаг позволяет от соотношения (ФМ2.19) перейти к соотношению (ФМ2.20).

(ФМ2.20)

Соотношение (ФМ2.20), будучи следствием тождественной записи равенства двух различных выражений для формы Леви волновой функции, выполняется тождественно. Применение операции покомпонентного сравнения тензооктанионов к соотношению (ФМ2.20) даёт «уравнения Максвелла» , представленные в уравнениях блока уравнений (ФМ2.21).

(ФМ2.21)

Нумерация прозрачно и естественно полученных уравнений Максвелла определяется порядком следования компонент сравниваемых тензооктанионов в базовой классификации компонент тензооктанионов. Перед записью обе части первого, второго и третьего уравнений блока уравнений (ФМ2.21) были умножены на –1 (минус единицу) .

Вместе третье и четвёртое уравнения блока уравнений (ФМ2.21) представляют собой «первую пару уравнений Максвелла» . Первое и второе уравнения блока уравнений (ФМ2.21) оказываются «второй парой уравнений Максвелла» .

Волновые уравнения и уравнение непрерывности заряда.Неотъемлемой частью современной электродинамики являются также волновые уравнения и уравнение непрерывности электрического заряда. Подобно уравнениям Максвелла выводятся они в электродинамике, основанной на древнеарийской философии, очень изящно, понятно и естественно.

Волновые уравнения. Подействуем на форму Леви волновой функции, точнее, на различные её два варианта записи, оператором дифференцирования по независимому контравариантному тензооктаниону. Согласно второй формуле блока формул (ФМ1.23), полученный при таком преобразовании результат можно рассматривать как компоненту связности.

Однако, коль скоро соотношение (ФМ2.20) получается из соотношения (ФМ2.19) путём приведения подобных слагаемых, то вместо соотношения (ФМ2.19) можно работать с соотношением (ФМ2.20). Начиная преобразования с левой части соотношения (ФМ2.20), получаем выражение (ФМ2.22).

(ФМ2.22)

Раскроем скобки в выражении (ФМ2.22). Четырёхкратное применения формулы (ФМ1.2) даёт выражение (ФМ2.23).

(ФМ2.23)

Трансформируем слагаемые выражения (ФМ2.23). Соотношение (ФМ3.23) примет вид соотношения (ФМ2.24).

(ФМ2.24)

При трансформации первого слагаемого выражения (ФМ2.23) использовалась третья формула блока формул (ФМ1.3), и потому его знак совпадает со знаком первого слагаемого выражения (ФМ2.24). Второе слагаемого выражения (ФМ2.23) преобразовывалось при помощи третьей формулы блока формула (ФМ1.4), и потому его знак противоположен знаку второго слагаемого выражения (ФМ2.24).

При трансформации третьего слагаемого выражения (ФМ2.23) использована третья формула блока формул (ФМ1.4), и потому, его знак противоположен знаку третьего слагаемого выражения (ФМ2.24). Четвёртое слагаемого выражения (ФМ2.23) преобразовывалось при помощи пятой формулы блока формул (ФМ1.5), и его знак оказывается противоположен знаку четвёртого слагаемого выражения (ФМ2.24).

При трансформации пятого слагаемого выражения (ФМ2.23) использована пятая формула блока формул (ФМ1.5), и потому его знак противоположен знаку пятого слагаемого выражения (ФМ2.24). Шестое слагаемое выражения (ФМ2.23) преобразовывалось при помощи шестой формулы блока формул (ФМ1.5), и его знак оказывается совпадающим со знаком шестого слагаемого выражения (ФМ2.24).

При трансформации седьмого слагаемого выражения (ФМ2.23) использована третья формула блока формул (ФМ1.6), и потому его знак противоположен знаку седьмого слагаемого выражения (ФМ2.24). Восьмое слагаемое выражения (ФМ2.23) преобразовывалось при помощи третьей формулы блока формул (ФМ1.6), и его знак оказывается противоположным знаку восьмого слагаемого выражения (ФМ2.24).

При трансформации девятого слагаемого выражения (ФМ2.23) использована четвёртая формула блока формул (ФМ1.3), и потому его знак противоположен знаку девятого слагаемого выражения (ФМ2.24). Десятое слагаемое выражения (ФМ2.23) преобразовывалось при помощи четвёртой формулы блока формул (ФМ1.4), и его знак оказывается противоположным знаку десятого слагаемого выражения (ФМ2.24).

При трансформации одиннадцатого слагаемого выражения (ФМ2.23) использована четвёртая формула блока формул (ФМ1.4), и потому его знак противоположен знаку одиннадцатого слагаемого выражения (ФМ2.24). Двенадцатое слагаемое выражения (ФМ2.23) преобразовывалось при помощи седьмой формулы блока формул (ФМ1.5), и его знак оказывается противоположным знаку двенадцатого слагаемого выражения (ФМ2.24).

При трансформации тринадцатого слагаемого выражения (ФМ2.23) использована седьмая формула блока формул (ФМ1.5), и потому его знак противоположен знаку тринадцатого слагаемого выражения (ФМ2.24). Четырнадцатое слагаемое выражения (ФМ2.23) преобразовывалось при помощи восьмой формулы блока формул (ФМ1.5), и его знак оказывается противоположным знаку четырнадцатого слагаемого выражения (ФМ2.24).

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Игорь Беляев читать все книги автора по порядку

Игорь Беляев - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Древнеарийская философия том 1 и том 2 отзывы


Отзывы читателей о книге Древнеарийская философия том 1 и том 2, автор: Игорь Беляев. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x