Игорь Беляев - Древнеарийская философия том 1 и том 2
- Название:Древнеарийская философия том 1 и том 2
- Автор:
- Жанр:
- Издательство:Фонд развития и поддержки следственных органов, Журнал «Национальная безопасность и геополитика России»
- Год:2008
- Город:Москва
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Игорь Беляев - Древнеарийская философия том 1 и том 2 краткое содержание
Ни для кого не является секретом, что не так давно официальная точка зрения на вопрос происхождения мира была такова, что окружающий мир считался Сотворённым Богом. Собственно говоря, она и ныне встречается в любой религии.
Правда, в наше атеистическое время многие с усмешкой относятся к религиям, считая их предрассудками. Впрочем, времена меняются, и недавние атеисты встречаются среди представителей многочисленных религиозных конфессий.
Вдобавок, беспристрастный анализ внутреннего содержания логических структур религий приводит к весьма серьёзному и нестандартному выводу. Он заключается в том, что лежащие в основе любой религиозной философии и логики вовсе не являются нагромождением невежества, не могущего объяснить многие ежедневные нюансы нашей жизни.
Оказывается, что, с фундаментально глубинной позиции, все религии при поверхностном расхождении друг с другом внутренне оказываются в целом не только непротиворечивыми, но и сводятся к одной единственной схеме. И, как ни странно покажется такое на первый взгляд, первые упоминания о данной схеме затерялись в столь глубокой и седой древности, о которой человеческая память не смогла оставить даже самых смутных воспоминаний.
Она представляет собой древнеарийскую философию, великую мудрость седых тысячелетий, первоначально изложенную в священных книгах древних ариев – Ведах, Авесте, Ригведе и Велесовой книге. Ей посвящено уже великое множество работ, и данное произведение, конечно же, как оно следует, хотя бы из его названия, является одной из капелек данного бескрайнего океана.
В основном настоящий том посвящён изложению математических основ древнеарийской философии, и некоторых наиболее общих следствий из неё. С чисто научных позиций рассматриваются тайны вечных вопросов Бытия, смысла жизни и наших взаимоотношений с Мирозданием.
Одновременно показывается картина кризиса современной науки, отрицающей Бога и Сотворение Им окружающего мира. На фоне такого кризиса демонстрируются возможности древнего знания при анализе некоторых важных естественнонаучных проблем, являющихся камнем преткновения для учёных, свысока говорящих о том, что вера в Бога является предрассудком, подлежащим искоренению.
При написании настоящей книги автор старался уделять большое внимание доступности и простоте изложения материала. Он надеется, что это ему, пусть даже и частично, но удалось.
Древнеарийская философия том 1 и том 2 - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Далее произведём объединение в выражении (ФМ3.13) однотипных компонент тензооктанионов. Как следствие, получим выражение (ФМ3.14).
(ФМ3.14)
Разобравшись с правой частью уравнения (ФМ3.9), трансформируем и её левую часть. Оператор дифференцирования по собственному времени является обычным оператором дифференцирования по времени, и потому справедливо выражение (ФМ3.15).
(ФМ3.15)
При трансформации первого слагаемого выражения левой части уравнения (ФМ3.9) была использована третья формула блока формул (ФМ1.3), и потому его знак совпадает со знаком первого слагаемого выражения (ФМ3.15). Второе слагаемое выражения левой части уравнения (ФМ3.9) преобразовывалось при помощи шестой формулы блока формул (ФМ1.5), и его знак оказывается противоположным знаку второго слагаемого выражения (ФМ3.15).
При трансформации второго слагаемого выражения левой части уравнения (ФМ3.9) необходимо учитывать, что обрабатывается не тензооктанион скорости, а комплексно сопряжённый ему тензооктанион. И, наконец, покомпонентное сравнение выражений (ФМ3.14) и (ФМ3.15) даёт уравнения блока уравнений (ФМ3.16).
(ФМ3.16)
Необходимо отметить, что третье и четвёртое уравнения блока уравнений (ФМ3.16) выводятся также и в современной физике. Они являются, соответственно, уравнением, описывающими изменение кинетической энергии, и уравнением движения заряженной материи в поле электромагнитных сил.
Однако, первое и второе уравнения блока уравнений (ФМ3.16) напрямую в современной науке не выводятся. И, всё же, нельзя сказать, что о них там ничего не знают, хотя бы, на уровне интуиции.
Дело в том, что первое уравнение блока уравнений (ФМ3.16) просто постулирует тот факт, что вектор напряжённости магнитного поля в полном вакууме всегда перпендикулярен вектору плотности тока. Второе уравнение блока уравнений (ФМ3.16) накладывает связи на значения объектов описания электромагнетизма.
Из него, в частности, следует, что электрическое и магнитное поле одновременно могут существовать только либо в присутствии зарядов и токов, либо при их полном отсутствии. Более того, оказывается, что по отдельности они могут наблюдаться, соответственно, только в отсутствии токов или зарядов.
Тензооктанион энергии электромагнитного поля.В современной физике используется тензор энергии электромагнитного поля. Похожий объект определяется и в основанной на древнеарийской философии электродинамике.
Определение. В отличие от некоторых иных введённых объектов, «тензооктанион энергии электромагнитного поля F» не является полным аналогом тензора электромагнитного поля. Если отвлечься от несущественных сейчас констант, то можно считать, что тензооктанион энергии электромагнитного поля F определяется формулой (ФМ3.17).
(ФМ3.17)
Причиной отмеченного отсутствия полной аналогии является избыточность тензора электромагнитного поля. Из-за неё, в частности, наглядного физического смысла для тензора энергии электромагнитного поля не существует.
Раскрытие выражения. Раскроем выражение для тензооктаниона энергии электромагнитного поля F в случае вакуума. Опираясь на исходную формулу умножения двух тензооктанионов и определяющую тензооктанион электромагнитного поля формулу (ФМ2.6), перейдём от правого выражения формулы (ФМ3.17) к выражению (ФМ3.18).
(ФМ3.18)
Для дальнейшего преобразования выражения (ФМ3.18) воспользуемся правилами трансформации результатов умножений. В итоге, получаем выражение (ФМ3.19).
(ФМ3.19)
При трансформации первого слагаемого выражения (ФМ3.18) использовалась четвёртая формула блока формул (ФМ1.4), и потому его знак противоположен знаку первого слагаемого выражения (ФМ3.19). Второе слагаемого выражения (ФМ3.18) преобразовывалось при помощи четвёртой формулы блока формул (ФМ1.6), и его знак оказывается противоположным знаку второго слагаемого выражения (ФМ3.19).
При трансформации третьего слагаемого выражения (ФМ3.18) использовалась третья формула блока формул (ФМ1.4), и потому его знак противоположен знаку третьего слагаемого выражения (ФМ3.19). Четвёртое слагаемое выражения (ФМ3.18) преобразовывалось при помощи третьей формулы блока формул (ФМ1.6), и его знак оказывается противоположным знаку четвёртого слагаемого выражения (ФМ3.19).
При трансформации пятого слагаемого выражения (ФМ3.18) использовалась вторая формула блока формул (ФМ1.4), и потому его знак совпадает со знаком пятого слагаемого выражения (ФМ3.19). Шестое слагаемого выражения (ФМ3.18) преобразовывалось при помощи второй формулы блока формул (ФМ1.6), и его знак оказывается совпадающим со знаком шестого слагаемого выражения (ФМ3.19).
При трансформации седьмого слагаемого выражения (ФМ3.18) использовалась первая формула блока формул (ФМ1.4), и потому его знак противоположен знаку седьмого слагаемого выражения (ФМ3.19). Восьмое слагаемое выражения (ФМ3.18) преобразовывалось при помощи первой формулы блока формул (ФМ1.6), и его знак оказывается совпадающим со знаком восьмого слагаемого выражения (ФМ3.19).
При дальнейшем преобразовании выражения (ФМ3.19) необходимо учесть некоторые свойства векторного анализа. Более конкретно, нужно произвести следующие действия:
· воспользовавшись тем, что векторное произведение вектора на самого себя, в данном случае вектора напряжённостей электрического поля E и магнитного поля H , тождественно равно 0 (нулю) , избавится от второго и восьмого слагаемых выражения (ФМ3.19);
· учтя, что векторное произведение меняет знак при смене порядка следования в нём векторов, учесть данный факт в шестом слагаемом выражения (ФМ3.19), и затем сложить его с четвёртым слагаемым выражения (ФМ3.19);
· помня, что скалярное произведение не меняет знак при смене порядка следования в нём векторов, применить такой вывод в пятом слагаемом выражения (ФМ3.19), потом сократив его с третьим слагаемым выражения (ФМ3.19).
Необходимо также учесть, что скалярное произведение вектора или чисто пространственного тензооктаниона с самим собой даёт его квадрат со знаком минус . Учёт же всех произведённых замечаний и раскрытие скобки в выражении (ФМ3.19) позволяет переписать его как выражение (ФМ3.20).
(ФМ3.20)
Выражение (ФМ3.20) и определяет тензооктанион энергии электромагнитного поля, которому в современной физике сопоставляется «четырёхвектор Умова-Пойтинга» . По своему физическому смыслу оба данных выражения являются показателями убыли энергии и импульса электромагнитного поля в единицу времени.
Форма Леви функции плотности.Большая мощь алгебры тензооктанионов может навести на мысль о том, что в ней возможно выведение формул, недоступных для современной науки. Подобная мысль тем более имеет основания, что выше такое уже не раз случалось.
Читать дальшеИнтервал:
Закладка: