Юрий Ревич - Занимательная электроника
- Название:Занимательная электроника
- Автор:
- Жанр:
- Издательство:БХВ-Петербург
- Год:2015
- Город:Санкт-Петербург
- ISBN:978-5-9775-3479-6
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Юрий Ревич - Занимательная электроника краткое содержание
На практических примерах рассказано о том, как проектировать, отлаживать и изготавливать электронные устройства в домашних условиях. От физических основ электроники, описания устройства и принципов работы различных радиоэлектронных компонентов, советов по оборудованию домашней лаборатории автор переходит к конкретным аналоговым и цифровым схемам, включая устройства на основе микроконтроллеров. Приведены элементарные сведения по метрологии и теоретическим основам электроники. Дано множество практических рекомендаций: от принципов правильной организации электропитания до получения информации о приборах и приобретении компонентов применительно к российским условиям. Третье издание дополнено сведениями о популярной платформе Arduino, с которой любому радиолюбителю становятся доступными самые современные радиоэлектронные средства.
Для широкого круга радиолюбителей
Занимательная электроника - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:

Рис. 16.9. Схемы триггеров с предустановкой при включении питания: на двухвходовых элементах ( а) и на трехвходовых элементах ( б)
Чтобы избежать нагромождения инверторов, можно в этой схеме использовать трехвходовые элементы (561ЛЕ10), как показано на рис. 16.9, б .
Естественно, RS-триггеры выпускают и в интегральном исполнении (561ТР2 содержит четыре простых RS-триггера). Все более сложные триггеры, а также счетчики в интегральном исполнении, обязательно имеют отдельные асинхронные RS - или хотя бы только R -входы. Причем соответствующий вход у любого устройства, его имеющего — от микропроцессоров до счетчиков — является асинхронным, т. е. вся система обнуляется в момент подачи импульса по входу R , независимо от того, что в этот момент она делает. Говорят еще, что вход Reset — вход обнуления — имеет наивысший приоритет . Именно это происходит, скажем, когда вы нажимаете кнопку Reset на системном блоке вашего компьютера.
Использование RS-триггера является самым кардинальным способом решения проблемы дребезга контактов. Стандартная схема показана на рис. 16.10, а , однако нет никакой нужды городить такую схему с резисторами, относительно которых еще нужно соображать, к чему их подключать (для варианта с «ИЛИ-НЕ» их пришлось бы присоединять к «земле», а не к питанию). На рис. 16.10, б показана упрощенная схема, которая работает точно так же, и при этом в ней можно использовать любые инверторы, в том числе и одновходовые. Общим недостатком схем «антидребезга» как с RS-триггерами, так и с использованием элемента «Исключающее ИЛИ» (см. рис. 15.8, б ) является необходимость применения переключающей кнопки с тремя выводами, которых в продаже предлагается гораздо меньше, чем обычных замыкающих и размыкающих с двумя контактами. Попробуйте приспособить двухвыводную кнопку к любой из указанных схем, и вы сами придете к выводу, что это невозможно. Поэтому на практике часто приходится использовать схему «антидребезга» с использованием одновибратора (в том числе реализованного программными способами в микроконтроллерах) — при всех ее недостатках.

Рис. 16.10. Схемы «антидребезга» на RS-триггерах
D-триггеры
D-триггеры получили свое название от слова « delay », что означает «задержка». На самом деле существуют две их разновидности, формально различающиеся только тем, что первая из них управляется уровнем сигнала (статический D-триггер или триггер-защелка), а вторая — фронтом импульса (динамический D-триггер). Фактически же это разные по устройству и области использования схемы.
Для того чтобы отличить статический D-триггер от динамического, мы в обозначении на схеме для первого поставим букву L (от слова « level » — уровень), а для второго — букву « Е » (от слова « edge » — фронт). Эти обозначения не являются общепринятыми, и в дальнейшем мы их использовать не будем, только здесь — для наглядности. Микросхема 561ТМЗ содержит четыре статических триггера-защелки с общим входом синхронизации, а 561ТМ2 — два динамических D-триггера с раздельными дополнительными входами R и S (мы с ней уже знакомы — см. рис. 16.5). Если тип вообще не указывается, то обычно по умолчанию предполагается, что речь идет о динамических D-триггерах.
Статический D-триггер легко получить из RS-триггера путем небольшой модификации его схемы. Если из схемы на рис. 16.11, а исключить вход С (например, объединив входы каждого элемента и превратив их тем самым в простые инверторы), то получится довольно бесполезное устройство, которое на выходе Q будет просто повторять входные сигналы, а на втором выходе, соответственно — выдавать их инверсии. Наличие тактового входа С (от слова « clock », которое в цифровой электронике значит «тактовый импульс») все меняет.

Рис. 16.11. D-триггеры:
а— схема статического D-триггера;
б— схема динамического D-триггера на основе двух статических,
в— счетный триггер на основе динамического D-триггера
Если мы обратимся к диаграммам на рис. 15.8, а , то увидим, что при наличии на этом входе уровня логической единицы входные сигналы будут пропускаться на вход RS-триггера, и схема станет повторять на выходе Q уровни на входе D . Если же мы установим на входе С уровень нуля, то схема немедленно «зависнет» в состоянии выхода, соответствующем входному уровню непосредственно перед приходом отрицательного фронта на вход С , — т. е. запомнит его! Поэтому такой триггер и называют защелкой — при подаче на вход С короткого положительного тактового импульса он как бы «защелкивает» состояние входа. Статический D-триггер можно использовать в качестве буферного регистра для хранения данных — например, результатов счета импульсов на то время, пока идет сам процесс счета. Статическая энергозависимая память (SRAM) также, как правило, использует такие триггеры в качестве элементарных ячеек.
Динамические D-триггеры более универсальны, и область применения у них куда шире, чем у статических. Динамический триггер устроен более сложно. Один из способов построения динамического D-триггера из двух статических показан на рис. 16.11, б . Эта схема работает следующим образом: когда на общем входе С наличествует отрицательный уровень, состояние входа D переписывается на выход первого (слева) триггера, при этом второй триггер заперт. Сразу после положительного фронта на входе С это состояние переписывается во второй триггер и появляется на выходе Q , а первый триггер запирается. Таким образом, запоминание состояния общего D-входа происходит в точности в момент положительного перепада уровней и никогда больше. Если изменить местоположение инвертора и присоединить его ко входу второго триггера, а на первый триггер подавать тактовые импульсы напрямую, то срабатывание станет происходить по отрицательному фронту, и такой тактовый вход будет считаться инверсным. Для того чтобы получить дополнительные входы асинхронной принудительной установки триггера в нулевое и единичное состояние ( R - и S -входы), нужно для обоих статических триггеров выходные (правые по схеме рис. 16.11, а ) элементы сделать трехвходовыми и объединить соответствующие входы у обоих триггеров. Устанавливать по входам R и S только выходной триггер недостаточно (подумайте почему?).
Читать дальшеИнтервал:
Закладка: