Юрий Ревич - Занимательная электроника
- Название:Занимательная электроника
- Автор:
- Жанр:
- Издательство:БХВ-Петербург
- Год:2015
- Город:Санкт-Петербург
- ISBN:978-5-9775-3479-6
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Юрий Ревич - Занимательная электроника краткое содержание
На практических примерах рассказано о том, как проектировать, отлаживать и изготавливать электронные устройства в домашних условиях. От физических основ электроники, описания устройства и принципов работы различных радиоэлектронных компонентов, советов по оборудованию домашней лаборатории автор переходит к конкретным аналоговым и цифровым схемам, включая устройства на основе микроконтроллеров. Приведены элементарные сведения по метрологии и теоретическим основам электроники. Дано множество практических рекомендаций: от принципов правильной организации электропитания до получения информации о приборах и приобретении компонентов применительно к российским условиям. Третье издание дополнено сведениями о популярной платформе Arduino, с которой любому радиолюбителю становятся доступными самые современные радиоэлектронные средства.
Для широкого круга радиолюбителей
Занимательная электроника - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
А на рис. 16.11, в показана самая простая схема счетного триггера на основе динамического D-триггера, уже знакомая нам по рис. 16.5. Из описанного ясно, как она работает, — при каждом положительном перепаде на выход Q будет переписываться состояние противоположного выхода Q¯ , т. е. система станет с приходом каждого тактового импульса менять свое состояние на противоположное, в результате чего на выходе мы получим симметричный (независимо от скважности входных импульсов) меандр с частотой, вдвое меньшей, чем входная. Такой триггер можно считать делителем частоты на два или одноразрядным двоичным счетчиком — в зависимости от того, для чего он используется. В отличие от всех остальных типов триггеров (а кроме описанных, распространены еще, например, и так называемые JK-триггеры , но мы их рассматривать не будем), счетные триггеры в интегральном исполнении отдельно не выпускаются (при случае их легко, как вы видели, соорудить, например, из D-триггеров), а выпускаются только готовые многоразрядные двоичные счетчики, из таких триггеров составленные. К рассмотрению счетчиков мы перейдем чуть позднее, а пока кратко остановимся на регистрах.
Регистры
Регистрами называют устройства для хранения одного двоичного числа. Количество разрядов в регистрах, выпускаемых отдельно, обычно не превышает восьми, но в составе других микросхем могут быть и регистры с большей разрядностью — вплоть до 128 или 256 битов в «продвинутых» микропроцессорах. Большинство типов электронных запоминающих устройств, вообще говоря, можно рассматривать как совокупность регистров. Но собственно регистры, как входящие в состав процессоров, так и выпускаемые отдельно, отличаются тем, что позволяют не только записывать и считывать информацию, но и производить некоторые простейшие операции, — например, сдвиг разрядов.
Простейший регистр — это упомянутый ранее статический D-триггер. Четыре таких триггера, входящих в микросхему 561ТМЗ, образуют четырехразрядный регистр с параллельной записью и считыванием, причем тактовый вход в этой микросхеме у всех четырех разрядов общий. Как и сам триггер, такой регистр называют «защелкой».
Если регистр-защелка позволяет осуществлять только параллельную запись, то последовательный регистр (пример — 561ИР2), наоборот, имеет возможность записи только через один вход, который является D-входом самого младшего разряда. Последовательный регистр является неким обобщением конструкции D-триггера. Работу динамического D-триггера можно рассматривать, как процесс сдвига информации от входа через первый триггер ко второму при поступлении соответствующих перепадов на тактовом входе. В последовательном регистре, который в простейшем случае представляет собой просто последовательное соединение таких триггеров, происходит нечто подобное — с каждым фронтом тактового импульса информация сдвигается от младшего разряда к старшему, при этом в младший разряд записывается состояние входа. Считывать информацию при этом можно из каждого разряда в отдельности, как и в случае регистра-защелки. Такие регистры получили еще название сдвиговых. Они широко используются для последовательного ввода и вывода информации — скажем, для вывода восьми битов через последовательный порт RS-232 достаточно записать их в такой регистр, а потом подать на него восемь тактовых импульсов с нужной частотой.
Сдвиговый регистр можно закольцевать — соединить выход старшего разряда со входом младшего и получить нечто подобное слону из анекдота, который засунул хобот себе в известное место. Однако в случае одного сдвигового регистра такое соединение приведет к тому же результату, что и для слона, т. е. оно довольно бесполезно практически, ибо мы без дополнительных ухищрений запись информации производить уже не сможем. Поэтому используют объединение параллельной и последовательной записи/считывания в одном устройстве (пример — четырехразрядный регистр 561ИР9 или восьмиразрядный 561ИР6).
* * *
Заметки на полях
Такие сдвиговые регистры с параллельной записью и последовательным считыванием информации — неотъемлемая часть устройств памяти большой емкости, без них чтение и запись в большие массивы запоминающих ячеек были бы невозможны. Имеются они, например, в матрицах цифровых камер. Интересное применение таких регистров — организация последовательного интерфейса SPI, широко используемого для скоростного обмена информацией между различными микросхемами (например, между энергонезависимой памятью вроде флэш-карточек и микроконтроллером).
В SPI наличествуют два восьмибитовых регистра, соединенных в кольцо входами/выходами, но они разделены пространственно: один регистр находится в одном устройстве, другой — в другом. Если подавать тактовые импульсы на оба регистра одновременно (это осуществляет одно из устройств — ведущее), то после подачи ровно 8 импульсов устройства обменяются содержимым своих регистров.
* * *
Счетчики
Самый простой счетчик можно получить, если соединить последовательно ряд счетных триггеров, как показано на рис. 16.12, а . У этой схемы есть две особенности. В первой из них легко разобраться, если построить диаграмму работы такого счетчика, начиная с состояния, в котором все триггеры находятся в состоянии низкого уровня на выходе («0000»). В самом деле, при подаче первого же импульса триггеры перейдут в состояние со всеми единицами («1111»)! Если строить диаграмму дальше, то Мы увидим, что последовательные состояния будут такими: «1110», «1101» и т. д. В этом легко узнать последовательный ряд чисел 15, 14, 13 — т. е. счетчик получился вычитающим, а не суммирующим.
А как можно получить суммирующий счетчик? Очень просто — надо ко входу каждого следующего триггера подсоединить не прямой выход предыдущего, а инверсный. Порядка ради можно тактовые импульсы подавать также через инвертор (рис. 16.12, б ), тогда все разряды счетчика, включая самый младший, будут срабатывать по заднему (отрицательному) фронту входного импульса, а не по переднему (у «настоящих» счетчиков тактовый вход и делается инверсным). В этом случае будет все в порядке — входные импульсы будут суммироваться (см. диаграмму) и мы получим ряд последовательных состояний: «0000», «0001», «00010», «0011» и т. д.
* * *
Заметки на полях
Удивительная все же штука — электроника! Сначала мы получили полную аналогию между абстрактной математической теорией и состояниями переключателей на реле, теперь вот — между не менее абстрактным арифметическим счетом и последовательными состояниями счетчика на триггерах. Чем этот счетчик отличается от дикаря, раскладывающего на земле палочки? Ничем, кроме того, что он раскладывает не палочки, а уровни напряжений, причем выгодно отличается от первобытного сознания тем, что еще и «владеет» позиционной системой счисления. Начинаешь понимать, почему ученые середины прошлого века были так обольщены возможностями электронных схем, что даже заговорили о «машинном разуме». Но это уже другая тема…
Читать дальшеИнтервал:
Закладка: