Юрий Ревич - Занимательная электроника

Тут можно читать онлайн Юрий Ревич - Занимательная электроника - бесплатно ознакомительный отрывок. Жанр: sci_radio, издательство БХВ-Петербург, год 2015. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Занимательная электроника
  • Автор:
  • Жанр:
  • Издательство:
    БХВ-Петербург
  • Год:
    2015
  • Город:
    Санкт-Петербург
  • ISBN:
    978-5-9775-3479-6
  • Рейтинг:
    2.9/5. Голосов: 921
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 60
    • 1
    • 2
    • 3
    • 4
    • 5

Юрий Ревич - Занимательная электроника краткое содержание

Занимательная электроника - описание и краткое содержание, автор Юрий Ревич, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

На практических примерах рассказано о том, как проектировать, отлаживать и изготавливать электронные устройства в домашних условиях. От физических основ электроники, описания устройства и принципов работы различных радиоэлектронных компонентов, советов по оборудованию домашней лаборатории автор переходит к конкретным аналоговым и цифровым схемам, включая устройства на основе микроконтроллеров. Приведены элементарные сведения по метрологии и теоретическим основам электроники. Дано множество практических рекомендаций: от принципов правильной организации электропитания до получения информации о приборах и приобретении компонентов применительно к российским условиям. Третье издание дополнено сведениями о популярной платформе Arduino, с которой любому радиолюбителю становятся доступными самые современные радиоэлектронные средства.

Для широкого круга радиолюбителей

Занимательная электроника - читать онлайн бесплатно ознакомительный отрывок

Занимательная электроника - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Юрий Ревич
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Со схемотехнической точки зрения все светодиоды, независимо от цвета свечения, представляют собой обычные диоды, за одним исключением — прямое падение напряжения на них превышает обычные для кремниевых p-n -переходов 0,6 В и составляет: для красных и инфракрасных 1,5–1,8 В, для желтых, зеленых и синих — 2–3 В. В остальном их включение не отличается от включения обычных диодов в прямом направлении. То есть светодиод есть прибор, управляемый током (а не напряжением, как лампа накаливания), поэтому обязательно должен иметь токоограничивающий резистор . При питании осветительных светодиодных приборов в токоограничивающем резисторе впустую терялась бы слишком большая мощность, потому в них используют источники не напряжения, а стабилизированного тока.

Значение тока, при котором практически любой светодиод нормально светится, составляет 3–8 мА (хотя предельно допустимое может быть и 40 мА), на эту величину и следует рассчитывать схему управления светодиодами. При этом нужно учитывать, что яркость, воспринимаемая глазом, не зависит линейно от тока — вы можете и не заметить разницу в свечении при токе 5 и 10 мА, а разница между 30 и 40 мА еще менее заметна. Светодиоды — одни из самых удобных электронных компонентов, т. к. один можно поменять на другой практически без ограничений и без необходимости пересчета схемы.

Иногда токоограничивающий резистор встраивают прямо в светодиод (в этом случае яркость свечения уже управляется напряжением, как у обычной лампочки, а не током) — это распространенная практика для «мигающих» светодиодов со встроенным генератором частоты. Обычное предельное напряжение для таких светодиодов составляет 12–15 В. В остальных случаях вопрос «каким напряжением питать светодиод», вообще говоря, не имеет смысла.

Светодиоды делают разной формы — обычно они круглые, но используются также плоские, квадратные и даже треугольные. Широкое распространение сейчас имеют двухцветные светодиоды. Они бывают двух- и трехвыводные. С последними все понятно — это просто два разноцветных светодиода (зеленый и красный) в одном корпусе, управляющиеся раздельно. Подал ток на один — зажегся красный, на другой — зеленый, на оба — желтый (третий вывод общий), а манипулируя величиной токов, можно получить все промежуточные переходы. Но еще интереснее двухвыводной тип, который представляет собой два разноцветных светодиода, включенные встречно-параллельно. Поэтому в них цвет свечения зависит от полярности тока: в одну сторону красный, в другую — зеленый. Самое интересное получается, если подать на такой светодиод переменный ток — тогда он светится желтым!

* * *

Заметки на полях

Двухцветные светодиоды с тремя выводами (т. е. с раздельным управлением красным и зеленым) по какой-то неясной причине чаще всего поступают в продажу в прозрачном корпусе. Такой светодиод имеет небольшой угол рассеяния и сбоку почти не виден — прозрачные светодиоды ориентированы на применение в случаях, когда нужно сконцентрировать поток в небольшом угле (для наблюдения издалека, например). В остальных случаях целесообразно использовать светодиоды с матовым диффузным рассеивателем.

Для того чтобы превратить прозрачный светодиод в матовый, его можно покрасить «молочным» лаком. Такой лак не стоит искать в продаже — проще сделать его самому на один раз. Для этого возьмите на самый кончик кисточки чуть-чуть белой краски на основе масляного связующего (например, художественные белила из школьного набора, подойдет и алкидная или пентафталевая белая эмаль) и интенсивно перемешайте ее в посуде небольших размеров, вроде рюмочки или пробки от шампанского, с 5-10 граммами бесцветного нитроцеллюлозного мебельного лака (НЦ-222, НЦ-218 и т. п.). Посуда должна быть стеклянной или полиэтиленовой (одноразовую посуду применять нельзя — она может расползтись). Окуните светодиод в этот лак и снимите отжатой кисточкой, которой производилось размешивание, образующуюся каплю (просто осторожно прикоснитесь к ней, и лишний лак перейдет на кисточку). Через час светодиод готов к установке на место.

Светодиодные индикаторы

Поскольку собственное падение напряжения на светодиодах невелико, их можно включать последовательно, чем пользуются производители цифровых сегментных индикаторов. Но тут дело осложняется тем, что отдельный светодиод представляет собой фактически точечный источник света, и нарисовать с его помощью длинную светящуюся полоску непросто даже при наличии рассеивающей свет пластмассы (причем, как ни парадоксально, чем мельче, тем хуже выглядят плоские светодиоды). Мелкие цифровые индикаторы (с длиной одного сегмента до 5–6 мм) содержат по одному светодиоду в сегменте, а более крупные — по два и более. Это нужно учитывать при проектировании, т. к. семисегментный цифровой индикатор с высотой цифры 12,7 мм и более имеет падение напряжения на каждом сегменте, превышающее 4 В, и управлять им от пятивольтового микроконтроллера напрямую затруднительно — номинальный запас в несколько десятых вольта легко «сожрется» собственным сопротивлением выхода контроллера, отчего ваш индикатор вообще может и не загореться. Для таких случаев приходится идти на заведомые потери и питать индикаторы от повышенного напряжения через транзисторные ключи или специальные схемы управления индикаторами. Красота требует жертв! Набор семисегментных цифровых светодиодных индикаторов в четыре цифры в каком-нибудь мультиметре может потреблять до 100–200 мА тока — зато насколько он выглядит красивее по сравнению с почти ничего не потребляющими, но совершенно слепыми черно-белыми жидкокристаллическими панелями!

Семисегментные индикаторы (рис. 7.7, а ) бывают сдвоенными и строенными; кроме них встречаются шестнадцатисегментные индикаторы, которые позволяют формировать буквы и специальные знаки. Такие индикаторы для удобства управления ими делают с общим анодом (тогда на индикатор подается общее питание, а зажигание сегментов производится коммутацией их к «земле») и с общим катодом (сегменты имеют общую «землю», а зажигание производится подачей тока на каждый сегмент). Почти всегда выпускаются идентичные внешне типы и той и другой конфигурации. Для формирования длинных строк используют матричные индикаторы (рис. 7.7, б ), которые нередко встречаются в виде довольно больших дисплеев в несколько сотен точек.

В последние годы появились и сборные индикаторы на органических светодиодах (OLED), причем как символьные, так и графические (т. е. состоящие из матрицы точек). По внешнему виду они практически идентичны жидкокристаллическим (см. следующий раздел), но сегменты или точки в них светятся сами. Отличаются от обычных LED они гораздо меньшим потреблением тока — например, двухстрочный дисплей по 16 символов в строке может потреблять около 40 мА при напряжении 3–5 В. С одним из таких дисплеев мы познакомимся в главе 22 в связи с проектом метеостанции на платформе Arduino .

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Юрий Ревич читать все книги автора по порядку

Юрий Ревич - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Занимательная электроника отзывы


Отзывы читателей о книге Занимательная электроника, автор: Юрий Ревич. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x