Пауль Хоровиц - Искусство схемотехники. Том 3 [Изд.4-е]
- Название:Искусство схемотехники. Том 3 [Изд.4-е]
- Автор:
- Жанр:
- Издательство:Мир
- Год:1993
- Город:Москва
- ISBN:5-03-002954-0 (русск.); 5-03-002336-4; 0-521-37095-7 (англ.)
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Пауль Хоровиц - Искусство схемотехники. Том 3 [Изд.4-е] краткое содержание
Широко известная читателю по предыдущим изданиям монография известных американских специалистов посвящена быстро развивающимся областям электроники. В ней приведены наиболее интересные технические решения, а также анализируются ошибки разработчиков аппаратуры: внимание читателя сосредотачивается на тонких аспектах проектирования и применения электронных схем.
На русском языке издается в трех томах. Том 3 содержит сведения о микропроцессорах, радиотехнических схемах, методах измерения и обработки сигналов, принципах конструирования аппаратуры и проектирования маломощных устройств, а также обширные приложения.
Для специалистов в области электроники, автоматики, вычислительной техники, а также студентов соответствующих специальностей вузов и техникумов.
Искусство схемотехники. Том 3 [Изд.4-е] - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Интересную модель фотоэлектронного усилителя изображения представляет собой так называемый диссектор изображения - хитроумное устройство, которое фактически является предшественником описанных приборов. В нем после площадки чувствительного фотокатода располагается цепочка обычных для фотоумножителей динодов. Между фотокатодом и динодами имеется небольшая диафрагма и несколько отклоняющих электродов так, что любое пятно на фотокатоде может стать активной областью генерации электронов, умножаемых системой динодов. Можете считать, что диссектор изображения — это тот же фотоумножитель, но у которого рабочая область на фотокатоде электронным путем может перемещаться. Квантовый выход и усиление те же, что и у обычных ФЭУ, но от усилительных видиконов, ПЗС и УКМ (у всех у них изображение интегрируется) диссекторы отличаются тем, что между считываниями изображение в пределах входного поля зрения не накапливается. Конечно, детекторные матрицы ПЗС могут использоваться и без усилителя.
Компании EGG Reticon, Kodak, TI, Tektronix, Thomson и Toshiba выпускают их в виде одномерной («линейной») матрицы, содержащей до 4096 ячеек, или же в виде двумерной (плоской) матрицы, содержащей 256К (512x512) и более ячеек (так называемых «пикселов», или «элементов растра»). Toshiba, например, выпускает плоские детекторы с размещением до 2·10 6пикселов на один кристалл. Линейные матрицы более удобны как детекторы в спектроскопии; плоские же — для двумерных изображений, в телевизорах.
Все ПЗС являются свето-интегрирующими устройствами, т. е. у них, пока матрица не считывается, заряд в каждом пикселе накапливается. Во время считывания ПЗС ведет себя как аналоговый регистр сдвига с изображением растрового типа, возникающим в виде последовательных аналоговых импульсов на одной шине.
Измерение таких физических переменных, как положение и сила, само по себе достаточно сложно, и любой измерительный прибор должен включать в себя такие устройства, как тензодатчик, ДПЛП и т. п. Основным здесь является измерение перемещения. Существует несколько прекрасных методов измерения положения, смещения (изменение положения) и деформации (относительное удлинение).
ДПЛП. Весьма распространены ДПЛП (дифференциальные преобразователи линейных перемещений), название которых само объясняет их суть. Они строятся в виде трансформаторов с подвижным сердечником, в которых возбуждается переменным током одна обмотка и измеряется индуцированное напряжение во второй обмотке. Вторичные цепи имеют в середине отвод (или делаются как две отдельные обмотки) и располагаются симметрично по отношению к первичной, как показано на рис. 15.15.



Рис. 15.15. Датчики перемещений. а— дифференциальный преобразователь линейных перемещений (ДПЛП), вид в разрезе; б— схема ДПЛП; в— выходное напряжение ПЛП в зависимости от перемещения; г— схема тензодатчика.
ДПЛП выпускаются различных размеров и охватывают диапазон перемещений от 0,125 до 625 мм, с частотами возбуждения от 50 Гц до 30 кГц и точностью от 1 до 0,1 % или еще лучше. Лидирующей в этой области является фирма Schaevitz, в каталоге которой представлен широкий выбор линейных и угловых («ДПВП» [4] Дифференциальный преобразователь вращательных перемещений. — Прим. перев.
) преобразователей, приборов, преобразующих измерения датчиков ДПЛП в давление, силу, ускорение и т. п., а также устройств считывания данных ДПЛП. Если вы работаете в этой области и пользуетесь ДПЛП, у вас может возникнуть желание создать собственную аппаратуру, возможно использующую ИМС, предназначенные для специальных целей. Например, прибор Signetics NE5520/1 «LVDT [5] LVD ( linear variable differential transformer ) — англ. аббревиатура русского ДПЛП. — Прим. перев.
Signal Conditioner» выдает сигналы синусоидального возбуждения и включает в себя синхронный демодулятор, обеспечивающий выходное напряжение пропорциональное перемещению, измеренному ДПЛП. Устройства 2S54/6 Analog Devices являются синхронными демодуляторами с высокой линейностью (0,01 %), имеющими встроенные А/Ц-преобразователи, обеспечивающие прямые цифровые выходы (14 и 16 бит соответственно).
Тензодатчики. Тензодатчики измеряют удлинение и (или) изгиб сборки из четырех металлических тонкопленочных резисторов, подвергаемой деформации. Они выпускаются в виде законченных комплектов размерами от 0,4 мм до нескольких сантиметров с сопротивлением, обычно равным приблизительно 350 Ом/плечо. Электрическая схема тензодатчиков подобна мосту Уитстона: на два противоположно расположенных зажима подается постоянное напряжение, а с двух других снимается разность потенциалов, как уже рассматривалось в разд. 7.09 . Выходные напряжения очень малы, обычно около 2 мВ на 1 В возбуждения при полной шкале деформации, точность от 1 до 0,1 % всей шкалы (см. рис. 15.15, г ).
Очень нелегко измерять относительно малые удлинения, и определение величины деформации в этом случае, к сожалению, ненадежно. Небольшие различия в температурных коэффициентах элементов моста влияют на их чувствительность к температуре, что ограничивает точность деформации. Это проблематично даже в условиях контролируемой температуры окружающей среды из-за явления саморазогрева. Например, при возбуждении постоянным током напряжение 10 В 350-омного моста в чувствительном элементе рассеивается 300 мВт, а его температура возрастает на 10 °C (или больше), что вызывает ошибку в реальном сигнале от 0,1 до 0,5 % для всей шкалы.
В последнее время получили распространение полупроводниковые тензодатчики. На выходе они дают сигнал, в 10 раз превышающий сигнал металлопленочных приборов, а их сопротивление составляет несколько сотен омов. И что особенно важно, для их возбуждения можно использовать источник тока, а не источник напряжения, а это дает возможность минимизировать чувствительность к температуре.
Емкостные преобразователи. Очень чувствительный метод измерения перемещений может быть реализован, если использовать преобразователь, состоящий просто из двух близко расположенных друг к другу пластин или из пластины, заключенной между парой внешних пластин. Включив такой конденсатор в резонансную схему или используя мост, возбуждаемый переменным током высокой частоты, можете улавливать и измерять очень малые изменения положения. Емкостные микрофоны используют этот принцип для преобразования акустического давления или скорости его изменения в электрический сигнал звуковой частоты.
Читать дальшеИнтервал:
Закладка: