Наталья Бурханова - Теплотехника

Тут можно читать онлайн Наталья Бурханова - Теплотехника - бесплатно ознакомительный отрывок. Жанр: sci_tech, издательство Конспекты, шпаргалки, учебники «ЭКСМО»b4455b31-6e46-102c-b0cc-edc40df1930e, год 2008. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Теплотехника
  • Автор:
  • Жанр:
  • Издательство:
    Конспекты, шпаргалки, учебники «ЭКСМО»b4455b31-6e46-102c-b0cc-edc40df1930e
  • Год:
    2008
  • Город:
    Москва
  • ISBN:
    978-5-699-26007-2
  • Рейтинг:
    4.63/5. Голосов: 81
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 100
    • 1
    • 2
    • 3
    • 4
    • 5

Наталья Бурханова - Теплотехника краткое содержание

Теплотехника - описание и краткое содержание, автор Наталья Бурханова, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

Информативные ответы на все вопросы курса «Теплотехника» в соответствии с Государственным образовательным стандартом.

Теплотехника - читать онлайн бесплатно ознакомительный отрывок

Теплотехника - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Наталья Бурханова
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

На практике самопроизвольные процессы (переход тепла от горячих к холодным телам, диффузии, явления растворения и многие другие) являются необратимыми. Поэтому существует еще одна формулировка второго закона термодинамики:«Если реальный процесс является самопроизвольным, то он необратим».

35. Термодинамический КПД и холодильный коэффициент циклов

Источники, имеющие высокую температуру (Т 1) и отдающие теплоту рабочему телу, называются теплоот-датчиками.Источники, имеющие низкую температуру (Т 2) и получающие теплоту от рабочего вещества, называются теплоприемниками.

На РУ-диаграмме полезная работа кругового процесса равна площади, образованной кривыми прямого и обратного хода процесса и заключенной внутри цикла. Если на графике линия расширения расположена над линией сжатия, направление цикла происходит по часовой стрелке и произведенная в процессе работа потребляется внешними устройствами, такой цикл является прямым.Если на диаграмме линия сжатия расположена выше линии расширения, направление цикла происходит против часовой стрелки и работа совершается с помощью внешнего источника, такой цикл является обратным.

Полезную работу двигателя возможно получить только в случае, когда работа расширения больше работы по сжатию. Преобразование теплоты в механическую работу является несамопроизвольным процессом и обязательно должно сопровождаться компенсацией.

Тепловые устройства считаются идеальными,если в них нет потерь. Цикл также считается идеальным, если образован только обратимыми явлениями. В тепловых двигателях оценку экономичности идеального прямого цикла называют термическим коэффициентом полезного действия.Он равен отношению теплоты, которая преобразовалась в ходе цикла в работу, ко всей подведенной теплоте и обозначается h t («эта», греческая буква):

где 1 ц полезная работа q1 подведенная теплота q 2 отведенная теплота - фото 8

где 1 ц – полезная работа;

q1 – подведенная теплота;

q 2 – отведенная теплота. Внешняя работа при обратном цикле равна:

1 ц = q 1– q 2,

где q 1– отведенная теплота к горячему источнику;

q 2 – отведенная теплота от холодного источника.

Для обратного идеального цикла существует термин холодильного КПД,который обозначается χ t :

Можно сформулировать второй закон термодинамикитаким образом В тепловом - фото 9

Можно сформулировать второй закон термодинамикитаким образом: «В тепловом двигателе преобразование теплоты в механическую работу на 100% невозможно».

36. Обратный и обратимый цикл Карно

В термодинамических исследованиях практическое применение получило не только прямое, но и обратное направление цикла Карно. Отличие обратного циклазаключается в том, что теплота отводится от источника с низкой температурой и отдается источнику с высокой температурой. Такой цикл является идеальным для холодильных агрегатов.

Рабочее тело, участвующее в обратном цикле, называется холодильным агентом.При адиабатическом расширении температура снижается от значения 71 до величины Т т После этого при получении теплоты Я2 от холодного источника (Т2) газ изотермически сжимается. В следующем процессе происходит адиабатическое сжатие, и температура рабочего тела повышается от значения Т 2 до величины Т 1. При изотермическом сжатии теплота q 1 отнимается от рабочего вещества и переходит к горячему источнику.

Холодильная машина работает по обратному циклу, на создание которого тратится удельное количество работы (I). В этом случае от холодного к горячему источнику передается q 2 (количество теплоты), а горячий источник еще получает теплоту, численно равную произведенной работе I. Таким образом, полное количество теплоты, отведенное к горячему источнику, равно:

q 1= q 2+ 1

Работа в процессе расширения положительна, а работа в процессе сжатия отрицательна. Полная работа, необходимая для передачи теплоты от холодного к горячему источнику, равна:

I = q 1– q 2

и отрицательна.

Холодильный коэффициент e характеризует производительность работы холодильных устройств и определяется отношением:

Теплотехника - изображение 10

где q 2 – количество теплоты, отведенной от холодного источника и полученной горячим источником;

I – совершенная работа.

Для обратного и обратимого цикла Карно холодильный коэффициент вычисляется с помощью соотношения:

Теплотехника - изображение 11

37. Теорема Карно

Проведем краткий анализ формулы для термине-ского КПД обратимого прямого цикла Карно:

Из данного равенства следует 1 термический КПД зависит только от значений - фото 12

Из данного равенства следует:

1) термический КПД зависит только от значений температур горячего и холодного источников;

2) h t (для цикла Карно) тем больше, чем выше температура горячего источника (71) и чем ниже температура холодного источника (72);

3) в цикле Карно термический КПД обязательно должен быть меньше единицы. Так как h t = 1 может быть только в случае T 2/ T 1= 0, когда T 1= 0, либо T 2= 0 (или T 2= -273,15 oC). Температура холодного источника 72 в реальных тепловых двигателях представляет собой обычно температуру T 2= 260 – 300 K (окружающей среды). Температура нагревателя в топке паросиловых установок равна примерно 2000 К, а в двигателях внутреннего сгорания – около 2500 К, так как в поршневых цилиндрах этих двигателей стенки охлаждаются, и рабочим веществом становятся именно продукты сгорания. Отсюда вытекает то же утверждение, что всю теплоту, подведенную к газу в ходе цикла, нельзя полностью превратить в полезную работу, этот переход обязательно должен сопровождаться потерей части теплоты (она поглощается холодным источником);

4) в цикле Карно термический КПД равен нулю в случае T 1 = T 2. Из этого следует, что если в системе поддерживается тепловое равновесие, т. е. температура всех тел системы одинакова, то преобразование теплоты в полезную работу невозможно. Для цикла Карно (прямого) верно: h t = 1 – T 2/ T 1= 1 – 1 = 0 при T 1= η t= T 2(в случае равенства температур обоих источников);

5) термический КПД η tхарактеризует обратимый цикл Карно (круговой процесс). Все реальные процессы необратимы, это объясняется потерями энергии (из-за теплообмена, трения и др.). Поэтому термический КПД реального цикла Карно (необратимого) всегда меньше величины 1 – T 2 / T 1. Главной особенностью этого цикла является то, что он одинаков как для идеальных, так и для обычных реальных газов, если заданы температуры ( T 1, T 2) источников. Это утверждение представляет собой сущность теоремы Карно,которая гласит: «В тепловом двигателе для всякого обратимого цикла термический КПД не будет зависеть ни от характера цикла, ни от рода вещества (рабочего тела)». Он будет определяться только отношением температур нагревателя (теплоотдатчика) и холодильника (теплоприемника). Другими словами, в тепловом двигателе для каждого обратимого цикла термический КПД вычисляется с помощью такой же формулы, которая определена для обратимого цикла Карно.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Наталья Бурханова читать все книги автора по порядку

Наталья Бурханова - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Теплотехника отзывы


Отзывы читателей о книге Теплотехника, автор: Наталья Бурханова. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x