Наталья Бурханова - Теплотехника
- Название:Теплотехника
- Автор:
- Жанр:
- Издательство:Конспекты, шпаргалки, учебники «ЭКСМО»b4455b31-6e46-102c-b0cc-edc40df1930e
- Год:2008
- Город:Москва
- ISBN:978-5-699-26007-2
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Наталья Бурханова - Теплотехника краткое содержание
Информативные ответы на все вопросы курса «Теплотехника» в соответствии с Государственным образовательным стандартом.
Теплотехника - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
3. В результате дифференцирования термодинамического потенциала получается полный дифференциал данной функции.
4. Используя характеристические функции, записанные в дифференциальном виде, можно получить любые термодинамические параметры системы.
5. Термодинамический потенциал всей системы складывается из значений потенциала ее частей, т. е. обладает свойством аддитивности.
6. Характеристические функции устанавливают зависимость между различными термодинамическими свойствами вещества. Так, например, первые производные от потенциала характеризуют термические свойства (т. е. величины, измеряемые непосредственно приборами – объем, температура, давление), а вторые производные соответствуют калорическим свойствам системы (это величины, выраженные в единицах теплоты – теплоемкость, энтропия, энтальпия, внутренняя энергия).
7. Частные производные характеристических функций позволяютсоставлять уравнения теплоемкостей C v и C p, уравнения состояния и другие термодинамические зависимости.
8. Функция является характеристической только при определенных параметрах. При выборе других переменных она утрачиваетсвои свойства, потому что в этом случае частные производные не выражают термодинамические свойства системы.
45. Химический потенциал
Химической энергиейназывается такая энергия, которая образуется в результате химических взаимодействий и входит в состав внутренней энергии вещества. Химические реакции делятся на экзотермические (проходящие с выделением энергии) и эндотермические (сопровождающиеся ее поглощением).
В случае химической реакции меняется внутренняя энергия системы, так как меняется поглощение атомов в веществах-реагентах. Для таких процессов, можно применить первое начало термодинамики в виде:
U 1-U 2=∆U=Q+A,
где Q – количество теплоты;
DU – изменение внутренней энергии вещества;
А – полезная работа, включающая работу по преодолению также различных электромагнитных сил.
Работа, совершенная в процессе обратимой химической реакции, является максимальной. Ее выражают с помощью уравнения Гиббса-Гельмгольца:

Рассмотрим химический потенциал реакции. В случае химических реакций масса реагирующих веществ не постоянна, ее можно определить в виде функции т (количество вещества) от основных параметров (v, p, T, F, S, U и т. д). Продифференцируем равенство:
U = mu,
где u – удельное количество внутренней энергии, имеем:
dU = mdu + udm,
ф = u – ST + pv = i – ST
j – химический потенциал.
Но, химическим потенциаломназывается частная производная по массе, взятая от какого-либо термодинамического потенциала при определенных значениях аргумента. Химический потенциал показывает, как меняется энергия вещества, если его масса изменяется на единицу.
46. Основные дифференциальные уравнения термодинамики
Дифференциальные уравнения в термодинамикеиспользуются для исследования реальных газов, при теоретических (и практических) вычислениях.
Рассмотрим следующие случаи.
1. Независимыми переменными являются параметры p, V.

это первый закон термодинамики в дифференциальной форме.
2. Независимыми переменными являются параметры р, Т.

а полный дифференциал объема имеет вид:

3. Независимыми переменными являются параметры V, T.

4. При p = const теплоемкость

при v = const теплоемкость

47. Частные производные по объему, давлению, температуре
1. Частная производная по объему:

Это частная производная по объему, взятая от значения внутренней энергии. 2. Частная производная по давлению.
Подставим значение dQ в отношение dS = dQ / T, получаем:

Это частная производная по давлению, взятая от значения внутренней энергии. 3. Частная производная по температуре.


Это частная производная по температуре, взятая от значения внутренней энергии.
48. Уравнение неразрывности
Согласно газовой теории потока течение газа в случае стационарности определяется с помощью специальной системы уравнений. В нее входят следующие соотношения:
1) уравнение энергии для газового потока;
2) уравнение состояния;
3) уравнение для неразрывности газового потока.
Уравнение энергииследует из первого начала
термодинамики для газовых потоков.
Уравнением неразрывностиназывается соотношение:
Gv = Fw.
Из него следует, что в случае установившегося течения газа в каждом сечении потока расход газа по массе является постоянной величиной. Иначе это уравнение можно записать в виде:
G =pFw =p 1F 1w 1=P 2F 2w 2 =const ,
где r 1, r 2, r = 1/v плотность газа в поперечных сечениях;
F 1, F 2 – площадь сечения потока;
w 1, w 2 – скорость потока, измеряется в области сечения.
В данном случае имеется два сечения потока (1-е и 2-е), а величина G из этого уравнения называется массовым расходом газа (в секунду).
Как известно, второй закон Ньютона гласит: «Сила определяется произведением массы и ускорения». Если газовый поток имеет одномерный характер, то из второго закона следует:

В данном соотношении каждый член имеет определенное физическое значение. Рассмотрим каждый множитель из уравнения.
1. Величина

показывает, как изменяется давление в зависимости от Х-координаты.
Читать дальшеИнтервал:
Закладка: