Рудольф Ташнер - Число, пришедшее с холода. Когда математика становится приключением
- Название:Число, пришедшее с холода. Когда математика становится приключением
- Автор:
- Жанр:
- Издательство:КоЛибри, Азбука-Аттикус
- Год:2018
- Город:Москва
- ISBN:978-5-389-14486-6
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Рудольф Ташнер - Число, пришедшее с холода. Когда математика становится приключением краткое содержание
«Из великого множества историй о якобы безмерной власти чисел я отдал предпочтение тем, в которых проводится идея о том, что числа не просто оказались у людей под рукой. Числа были изобретены для того, чтобы упорядочить мир и сделать его обозримым. Числа — наши слуги, а отнюдь не господа. Числа — не фундамент бытия, но удобные обозначения, облегчающие понимание мира».
Число, пришедшее с холода. Когда математика становится приключением - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Это воспоминание чем-то сродни рассказу химика Августа Кекуле, который следующим образом описывает, как он во время поездки в омнибусе пришел к мысли о природе химических связей между атомами. «Я погрузился в грезы. Перед моим взором, словно бабочки, порхали атомы. Я всегда видел их как маленьких существ в непрестанном движении, но мне никогда не удавалось уловить узор их движения. В тот день мне, однако, удалось увидеть, как множество раз два мелких атома соединялись в парочки; как более крупные атомы охватывали эти мелкие двойки; еще более крупные ухватывали по три мелких атома, а самые крупные — по четыре, и как все это кружится в вибрирующем хороводе. Я видел, как крупные атомы соединяются в цепи, а мелкие лишь тянутся за ними, прицепившись к концам цепей… “Клэпхем-роуд!” — крикнул кондуктор, и я пробудился от своих грез».
В противоположность Гильберту Пуанкаре мало интересовался воспитанием как можно большего числа учеников, с которыми он мог бы делить свои прозрения. Пуанкаре вел куда более замкнутый образ жизни. В базе данных «Математическая генеалогия», в которой собраны сведения обо всех математиках, написавших докторские диссертации, мы читаем, что у Давида Гильберта было семьдесят пять диссертантов, а у Анри Пуанкаре — только пять.
Также, в противоположность Гильберту, Пуанкаре не был убежден в том, что математику следует понимать как формально-логическую игру с аксиомами. В математическом мышлении Пуанкаре отдавал преимущество не логике, а интуиции, прозрению, незамутненному взгляду в сущность проблем.
Самодостаточная непоколебимая достоверность, отражающая математическую суть вещей, была самым главным в глазах Пуанкаре. Логика служила лишь для того, чтобы доказать другим, что его озарение было верным и несомненным.
Мы хорошо знакомы с числами и счетом, производимым с их помощью. Для нас нет ничего более очевидного, чем тот факт, что шестью семь равно сорока двум. Мы также на сто процентов уверены в том, что существует бесконечное множество чисел 1, 2, 3, 4, 5,…. Во всяком случае, в том смысле, что в этом ряду не существует последнего числа. К каждому числу, сколь велико бы оно ни было, мы можем, по крайней мере мысленно, добавить еще единицу и получить число еще большее. Большего из бесконечного мы извлечь не можем — даже с помощью формально-логических аксиом.
Воспользуемся десятичным числом
π = 3,141 592 653 589 793 238 462 643 383 279 502 88 …
для того, чтобы показать разницу между понятиями Гильберта, с одной стороны, и понятиями Пуанкаре — с другой. Что означают три точки после невероятно длинной последовательности цифр? Ответ Гильберта был бы таким: «Это десятичное представление числа π. После целочисленной части 3 следует бесконечное множество десятичных разрядов. Я выписал первые тридцать пять цифр, а за ними следует бесконечная последовательность остальных цифр. Естественно, мне не удастся их записать. Но мои аксиомы позволяют мне помыслить, что они даны и существуют. Я мыслю это следующим образом: с помощью моих аксиом можно принципиально решить о каждом утверждении относительно десятичных разрядов числа π, является оно верным или нет».
Пуанкаре был бы куда более осторожным:
«Это десятичное представление числа π. За целочисленной частью 3 следуют 35 десятичных разрядов. Но ими десятичная запись этого числа не исчерпывается. Существуют способы вычисления 350, 3500 и вообще сколь угодно большого числа знаков числа π после запятой. Сколь угодно большое, но всегда конечное! Представление о том, что якобы существуют аксиомы, с помощью которых можно было бы разделить все утверждения относительно десятичных разрядов числа π на истинные и ложные, диаметрально противоречит самой сущности бесконечного».
Гильберт умер в 1943 г., а Пуанкаре скончался в возрасте 58 лет незадолго до начала Первой мировой войны. Это в значительной мере привело к тому, что в Париже в 1920-х гг. математика не пережила того расцвета, какой она пережила в Гёттингене. Кроме того, война скосила множество молодых математических талантов, а немногие молодые французские интеллектуалы, решившие посвятить себя математике, чувствовали себя брошенными на произвол судьбы. Старые университетские профессора были лишены порыва и страсти Пуанкаре; они преподавали математику по солидным, но давно устаревшим учебникам середины XIX в. [32]
Наука, построенная на песке
Итак, именно поэтому не в Париже, а в Цюрихе и Амстердаме нашлись два математика мирового уровня, которые развили наследие Анри Пуанкаре. В Амстердаме это был Лёйтзен Эгберт Ян Брауэр, который уже в написанной в 1907 г. докторской диссертации «Об основах математики» {16} и в вышедшей в следующем году работе «Ненадежность логических принципов» {17} в весьма самоуверенном тоне подверг сомнению пользу математики, опирающейся исключительно на формальные аксиомы. В Цюрихе это был Герман Вейль, опубликовавший в 1908 г. книгу, где уже в предисловии можно было прочесть следующее: «В этой работе речь идет не о “непоколебимой скале”, на которой зиждется здание математического анализа, не о формализме, обставленном деревянными бутафорскими декорациями и призванном убедить читателей, а прежде всего самих себя в том, что это и есть фундамент. В этой работе я отстаиваю скорее мнение о том, что это здание, в существенной своей части, построено на песке».
«Анализ», исчисление чисел с бесконечным десятичным представлением, которому слепо доверяли Ньютон, Лейбниц и бесчисленное воинство математиков, естествоиспытателей и инженеров, выглядит, считал Вейль, как носящийся по морю без руля и ветрил корабль, который, как следует опасаться, может в любую минуту дать течь. Однако тринадцать лет спустя все стало еще серьезнее.
В начале 1920-х гг., когда только что закончилась Первая мировая война, оставившая в городах и человеческих душах страшные разрушения, когда на повестке дня стояли восстания, мятежи, экономические кризисы и гиперинфляция, Герман Вейль в пощаженной войной Швейцарии написал превосходную статью в блистательном стиле, озаглавленную «О новом кризисе основ математики» {18}. В статье он решительно порвал со своим учителем и встал на сторону Пуанкаре.
В математике, полагал Вейль, господствовала «внутренняя неустойчивость основ». Читая статью, читатель во многих местах с удивлением убеждался в том, что Вейль, хотя и писал об основах математики, заимствовал формулировки из сфер экономики и политики тогдашней, сотрясаемой кризисами, эпохи. Когда Вейль, например, говорит о «половине или трех четвертях правды в попытках самообмана, с которыми так часто приходится сталкиваться в политическом и экономическом мышлении», то он явно целится в сторонников неограниченных вычислительных действий с бесконечными величинами. Или, когда он, упоминая их возвышенные формальные теории, утверждает, что «в их свете математика предстает в виде бумажной экономики», несомненно, имея в виду обесцененные бумажные деньги, которыми в то время люди в буквальном смысле топили печи, чтобы согреться. Также когда он один видит в предложениях своего голландского коллеги Брауэра путь к выходу из кризиса основ, о чем весьма патетически пишет (в научной статье и в серьезном математическом журнале): «Брауэр — это революция!»
Читать дальшеИнтервал:
Закладка: