Рудольф Ташнер - Число, пришедшее с холода. Когда математика становится приключением
- Название:Число, пришедшее с холода. Когда математика становится приключением
- Автор:
- Жанр:
- Издательство:КоЛибри, Азбука-Аттикус
- Год:2018
- Город:Москва
- ISBN:978-5-389-14486-6
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Рудольф Ташнер - Число, пришедшее с холода. Когда математика становится приключением краткое содержание
«Из великого множества историй о якобы безмерной власти чисел я отдал предпочтение тем, в которых проводится идея о том, что числа не просто оказались у людей под рукой. Числа были изобретены для того, чтобы упорядочить мир и сделать его обозримым. Числа — наши слуги, а отнюдь не господа. Числа — не фундамент бытия, но удобные обозначения, облегчающие понимание мира».
Число, пришедшее с холода. Когда математика становится приключением - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Антитезой традиции, считал Вейль, стала математика Брауэра. В этой новой математике невозможно обходиться с числами с бесконечным десятичным представлением как с простыми «конечными» числами — даже в том случае, если их рассматривают как «фигуры» в аксиоматических математических «шахматах». Бесконечное — это скорее предельное понятие, которое постоянно ускользает от хватки мышления. Поэтому, как считали Вейль и Брауэр, многие математические теоремы, основанные на наивном взгляде на бесконечное, должны быть отброшены. Точно так же беспочвенными и бессмысленными спекуляциями являются истории о «гостинице Гильберта», за исключением последней из них, где вводятся такие аспекты бесконечного, как «счетные» и «несчетные» множества. Это прозрение Кантора было высоко оценено Брауэром и Вейлем, хотя они понимали его совершенно не так, как сам Георг Кантор.
Уже в 1908 г. Вейль писал, говоря о построенной на песке математике: «Я полагаю возможной замену шатких подпорок надежным фундаментом; однако на этом фундаменте будет зиждиться не все, что сегодня считают неоспоримым и достоверным; от всего остального я отрекаюсь, ибо не вижу никакой другой возможности».
Гильберт пришел в неописуемую ярость [33]. В статье по поводу «Нового обоснования математики» он вначале проявлял некоторую сдержанность: «Уважаемые и заслуженные математики, Вейль и Брауэр, ищут решения проблемы (имеется в виду обоснование математики в целом. – Авт. ) на ложном, по моему мнению, пути». Однако уже через две страницы читатель чувствует прорывающийся наружу гнев: Вейль и Брауэр, писал Гильберт, «пытаются обосновать математику таким образом, чтобы выбросить за борт все, что представляется им неудобным, и установить в математической науке диктатуру запретов». После этого следуют гневные слова: «Мы разнесем вдребезги и изувечим нашу науку и столкнемся с опасностью утраты всех наших драгоценных сокровищ, если последуем за подобными реформаторами». В адрес же своего любимого ученика Вейля он отчеканил: «Нет, Брауэр — это не революция, как полагает Вейль, это всего лишь попытка осуществить путч старыми и негодными средствами».
Нет, Гильберт имел в виду не давно умершего Дюбуа-Реймона, а обоих «путчистов», Брауэра и Вейля, когда объявил о создании своей программы. Брауэр остался равнодушным к программе Гильберта. Даже когда полной и непротиворечивой системой математических аксиом Гильберта был создан надежный фундамент, учитывавший реальность бесконечного, к которой интуитивно приблизился Брауэр, для него осталась ничего не значащей игра слепыми понятиями. Напротив, Герман Вейль, движимый, возможно, уважением к своему учителю, сомневался и занял выжидательную позицию. Он сознавал, что в приложениях математики к естественно-научным и инженерным дисциплинам принципиальное различие между обычными числами и числами с бесконечным десятичным представлением не играет никакой роли, и представители этих дисциплин не понимают даже сути развернувшейся в математике борьбы [34]. Несомненно, Вейль разглядел интеллектуальный вызов в представленной Давидом Гильбертом программе, неслыханную и увлекательную задачу. Успех этой программы, вероятно, заставил бы его усомниться в правильности своей позиции в отношении взглядов Пуанкаре и Брауэра.
Однако история пошла другим путем.
Величайший логик ХХ столетия
После Гёттингена, Парижа, Амстердама и Цюриха мы переместимся на новую сцену. Остановимся в Вене, мучительно расстававшейся после Первой мировой войны с блеском имперской столицы. В ее университете, в котором самые блестящие математики и воодушевленные «Логико-философским трактатом» Людвига Витгенштейна мыслители объединились в Венский кружок, в конце 1920-х учился отпрыск богатого брюннского семейства Курт Гёдель.
Вначале Гёдель хотел посвятить себя физике. В детстве, однако, он переболел ревматизмом, и с тех пор стал панически бояться болезни и неминуемой смерти, тем более когда познакомился с Филиппом Фуртвенглером, своим преподавателем математики, прикованным к инвалидному креслу. Короче, Гёдель решил стать математиком. Вероятно, с задней мыслью о том, что математика — это специальность, которая гарантирует больному — а Фуртвенглер, в отличие от Гёделя, был нездоров — долгую жизнь. Всему, что делал в жизни Курт Гёдель, он давал логическое обоснование, что, конечно, может показаться несколько странным.
Для Гёделя вершиной каждой недели была встреча Венского кружка, который по четвергам собирался в маленькой аудитории на первом этаже большого институтского корпуса на Штрудльгофгассе. Математик Ханс Хан пригласил в кружок одаренного студента, ввел в общество доцентов и профессоров, душой которого был философ Мориц Шлик. Несмотря на то что Людвиг Витгенштейн никогда не принадлежал к Венскому кружку и даже находился к нему в умеренной оппозиции, его тезисы в начале деятельности кружка составляли главный стержень дискуссий. Потом главной темой стало логическое обоснование точных наук. В глазах членов кружка программа, предложенная Гильбертом, была путеводной нитью для всех остальных дисциплин. Все члены кружка были убеждены в том, что программа очень скоро будет выполнена в математике, и после этого ее соответствующие варианты надо будет в течение следующих десяти лет перенести в физику, биологию, а также психологию, социологию и конечно же в теорию познания.
Гёдель принимал участие во многих заседаниях кружка, но никогда не высказывался. Не зафиксировано ни одного его выступления, ибо, несмотря на поразительную способность к логическому анализу, он не верил в «преодоление метафизики посредством логического анализа языка», как сформулировал задачу кружка один из самых выдающихся его представителей Рудольф Карнап. Однако в своей докторской диссертации Гёдель не стал стесняться, и ее содержание уничтожило цель, которой Гильберт пытался достичь своей программой.
С помощью разработанного им самим гениального метода [35], основанного исключительно на арифметических операциях с числами и обладавшего такой же достоверностью, как тот факт, что шестью семь равно сорока двум, Гёдель смог доказать следующую теорему: в любой логически непротиворечивой системе, содержащей арифметику чисел, существуют утверждения, относительно которых принципиально невозможно решить, являются они истинными или ложными .
При этом важно, чтобы доказательство или опровержение всех утверждений системы могли проводиться только теми средствами, какими располагает эта система.
Коротко говоря, Гёдель указал на то, что в формальной математике Гильберта всегда прячется «ignoramus et ignorabimus».
Читать дальшеИнтервал:
Закладка: