Рудольф Ташнер - Число, пришедшее с холода. Когда математика становится приключением
- Название:Число, пришедшее с холода. Когда математика становится приключением
- Автор:
- Жанр:
- Издательство:КоЛибри, Азбука-Аттикус
- Год:2018
- Город:Москва
- ISBN:978-5-389-14486-6
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Рудольф Ташнер - Число, пришедшее с холода. Когда математика становится приключением краткое содержание
«Из великого множества историй о якобы безмерной власти чисел я отдал предпочтение тем, в которых проводится идея о том, что числа не просто оказались у людей под рукой. Числа были изобретены для того, чтобы упорядочить мир и сделать его обозримым. Числа — наши слуги, а отнюдь не господа. Числа — не фундамент бытия, но удобные обозначения, облегчающие понимание мира».
Число, пришедшее с холода. Когда математика становится приключением - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Но и это был не самый сокрушительный удар. Гёдель, помимо того, смог доказать следующее: только «извне», то есть с позиции, находящейся вне формальной системы, можно доказать, что эта система непротиворечива, ибо утверждение «формальная система является логически непротиворечивой» — это такое утверждение, относительно которого — находясь внутри системы — принципиально невозможно сказать, истинное оно или ложное.
Метафорически эти идеи Гёделя представил учившийся у Гильберта французский математик Андре Вейль, брат философа и мистика Симоны Вейль: «Бог существует, потому что математика непротиворечива, а дьявол существует, потому что мы не в состоянии этого доказать».
Мало того, сенсационно выглядело и то, как прозрение Гёделя стало достоянием математического сообщества: с 5 по 7 сентября 1930 г. в Кёнигсберге, городе, где родились Кант и Гильберт, состоялся шестой съезд немецких физиков и математиков, в котором приняли участие и выступили Рудольф Карнап как представитель Венского кружка, Аренд Гейтинг, ученик Брауэра, и Джон фон Нейман как представитель программы Давида Гильберта. Было предпринято много усилий для того, чтобы привлечь к участию в съезде представителей молодого поколения математиков. Этого хотели все, главным образом потому, что хотелось избежать ожидавшегося спора между приверженцами Брауэра и присутствовавшим на съезде Гильбертом. Молодые представители обеих школ, выступая, говорили обтекаемо и уклончиво. Принял участие в съезде и Гёдель, который изложил тезисы своей диссертации [36], чем снискал благосклонное одобрение участников. В конце заседания Гёдель попросил слова и объявил о своем последнем открытии, каковое будет опубликовано в его докторской диссертации: формальные системы, основанные на арифметических операциях с числами, необходимо являются неполными.
На тех, кто понимал, о чем идет речь, это заявление произвело эффект разорвавшейся бомбы. Сам Гильберт в этой дискуссии участия не принимал, потому что как раз в это время ехал в студию выступать с обращением, в котором он и сформулировал свое кредо: «Мы должны знать, и мы будем знать!» Однако Бернайс и фон Нейман прекрасно осознали важность заявления Гёделя: программа Гильберта в том виде, в каком она представлялась своему создателю, была безнадежно обречена. Лозунг «Мы должны знать, и мы будем знать!» оказался попросту несостоятельным. Несколько месяцев они не смели оповестить Гильберта о случившемся, боясь расстроить учителя и наставника.
До конца своих дней Гильберт отказывался признать важность теоремы Гёделя о неполноте.
Принстонские призраки
Сам Гёдель находил свое открытие чрезвычайно воодушевляющим. Он был твердо убежден в том, что математика, даже та, что позволяет выполнять расчеты с числами с бесконечным десятичным представлением, является непротиворечивой. С такой точки зрения программа Гильберта — это не более чем ненужное упражнение на усидчивость. Математика ничего не потеряет оттого, что признает это упражнение невыполнимым.
Выигрыш, наоборот, очень велик, ибо если существует высказывание, о котором можно утверждать, что внутри логической системы, в какой оно было сформулировано, оно не может быть ни доказано, ни опровергнуто, то это высказывание можно считать возможной новой аксиомой. Это означает, что можно словно декретом объявить это высказывание имеющим силу, а значит, обогащающим существовавшую систему ровно на это высказывание. Обогащенная на данное высказывание система остается непротиворечивой. Можно, однако, точно так же распорядиться, что верным является отрицание данного высказывания. Тогда мы получим из существовавшей системы новую расширенную, но другую систему, которая точно так же является непротиворечивой [37].
Таким образом, не возникает никаких затруднений относительно высказываний, о которых точно известно, что внутри логической системы, в которой они сформулированы, их невозможно ни доказать, ни опровергнуть. Их существует множество — и в каждой обогащенной системе ровно столько, сколько было и раньше, то есть бесконечное множество.
По этой причине, полагал Гёдель, существует безмерное число самых разнообразных возможностей играть с математикой. Если не считать арифметического ядра, которое обладает законной силой во всех вариациях, то можно утверждать, что в одних математических играх законны высказывания, каковые являются ложными в других играх, и наоборот. Однако каждое из прочтений математики, если опираются исключительно на него, является непротиворечивым. При этом существует полная свобода выбора того или иного варианта. Об этом догадывался уже Кантор, сказавший однажды: «Сущность математики заключается в ее свободе».
Именно свобода порождает ощущение всемогущества.
Всемогущества, которое угнетало Гёделя, ибо он был убежден в том, что все, что не противоречиво, на самом деле существует, то есть буквально имеется в наличии. Не абстрактно, а конкретно, в осязаемой реальности. Он был убежден в том, что существует неизмеримое множество непротиворечивых в себе «миров»; что есть «мультивселенная», несоизмеримо более многообразная, чем та, которую описывает в высшей степени спекулятивная космология. Каждым таким миром управляет какая-то одна из бесконечного множества непротиворечивых математических систем. Поскольку Гёдель знал обо всех этих мирах, они уживались в его сознании. Каждый из этих миров существует, когда человек перемещается в него, но тотчас исчезает, когда человек его покидает. Это миры-призраки.
Гёдель, величайший логик ХХ столетия, всерьез верил в привидения.
Такой же причудливой была и его жизнь. Его вечно преследовал страх — он боялся, что его больное сердце может в любую минуту остановиться, еда может нанести ему непоправимый вред, а нервная система может просто отказать. Врачам, с их абсолютно нелогичными диагнозами, вообще нельзя доверять. Какая бы жара ни стояла, он всегда очень тепло одевался, потому что угроза простуды всегда, словно дамоклов меч, нависала над его головой. Ко всему этому присоединились психоз и депрессия. Первый нервный срыв случился у Гёделя после того, как в главном здании университета был убит любимый Гёделем профессор Мориц Шлик. Гёдель сделал вывод: нигде нельзя быть уверенным в незыблемости собственного бытия.
Но мы можем лишь удивляться той дальновидности, с какой Гёдель выбрал себе будущую жену. Родители его были в ужасе. Гёдель влюбился в Адель Поркерт, гардеробщицу из скандального ночного клуба. Мало того что она была на семь лет старше его, она еще была и разведена. Только после смерти отца Гёдель смог убедить потрясенную мать и жениться на Адель. Но как же он был прав в своем выборе: Адель много раз спасала своего «Куртси» от разных опасностей. Когда после аншлюса какие-то сопливые штурмовики начали оскорблять Гёделя как еврея, Адель с помощью зонта обратила их в паническое бегство. Ей и ее мужу стало ясно: оставаться в Вене было нельзя. Гёдель не был евреем, он был немцем, признанным годным к военной службе. Призыв в вермахт означал бы верную смерть для этого щуплого и нескладного маленького человека. Адель смогла уберечь своего Курта от этой напасти, когда было получено письмо с приглашением на работу в Институт перспективных исследований в Принстоне от уже работавшего там Джона фон Неймана. Из-за войны попасть в Америку через Атлантический океан было невозможно, и Адель уговорила мужа поехать через Советский Союз по Транссибирской магистрали до Дальнего Востока, оттуда в Японию, а из Японии через Тихий океан на пароходе в Калифорнию, откуда лежал неблизкий путь через всю Америку до Принстона. Когда супруги наконец прибыли на Восточное побережье Штатов, у Гёделя снова разыгралась ипохондрия. Ему все время казалось, что его хотят отравить. Жене приходилось готовить все блюда у него на глазах, а потом пробовать пищу, прежде чем дать ее Курту.
Читать дальшеИнтервал:
Закладка: