Рудольф Ташнер - Число, пришедшее с холода. Когда математика становится приключением
- Название:Число, пришедшее с холода. Когда математика становится приключением
- Автор:
- Жанр:
- Издательство:КоЛибри, Азбука-Аттикус
- Год:2018
- Город:Москва
- ISBN:978-5-389-14486-6
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Рудольф Ташнер - Число, пришедшее с холода. Когда математика становится приключением краткое содержание
«Из великого множества историй о якобы безмерной власти чисел я отдал предпочтение тем, в которых проводится идея о том, что числа не просто оказались у людей под рукой. Числа были изобретены для того, чтобы упорядочить мир и сделать его обозримым. Числа — наши слуги, а отнюдь не господа. Числа — не фундамент бытия, но удобные обозначения, облегчающие понимание мира».
Число, пришедшее с холода. Когда математика становится приключением - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Однако чему равна нижняя грань x ?
Если число нулей в десятичном представлении числа π конечно, то x = 1/ m той положительной дроби, где m есть число нулей в десятичном представлении числа π.
Если же в десятичном представлении числа π содержится бесконечное число нулей, то x = 0.
Если мы не можем допустить существования «ignorabimus», то Гильберт должен смочь решить, является x положительным числом или нет. Таким образом, пустяковый и незначительный, на первый взгляд, вопрос привел к трудным проблемам, потрясшим основы мышления.
30
Этим словом Герман Вейль в своей статье «О новом кризисе основ математики» (Über die neue Grundlagenkrise der Mathematik) наилучшим образом выразил сущность точки зрения Гильберта.
31
Так пишет Анита Элерс в своей прекрасной книге «Боже мой! Физики и математики в анекдотах» (Liebes Hertz! Physiker und Mathematiker in Anekdoten).
32
Анри Картан и Андре Вейль, два молодых французских математика, которые вместе учились, а в начале 1930-х гг. преподавали в Страсбургском университете, организовали 10 декабря 1934 г. по случаю своего регулярного участия в Парижских математических семинарах встречу со своими молодыми коллегами в кафе «Капулад» на бульваре Сен-Мишель. Вся группа решила противопоставить устаревшим университетским учебникам новые, современные сочинения. Вероятно, на всех произвел должное впечатление стиль преподавания Давида Гильберта и Эмми Нётер, лекции которых слушали некоторые из молодых друзей.
Всем присутствующим представлялось важным, чтобы этот новый со всех точек зрения учебник представил всю математику от самых ее оснований. В их глазах математика была большой игрой, своего рода многомерными шахматами, каковыми математика рисовалась Давиду Гильберту в его программе.
Эти молодые математики, собравшиеся в кафе «Капулад», были на самом деле бывалыми знатоками математической игры. Они умело играли в нее, еще учась в Высшей нормальной школе, самом элитном учебном заведении Франции. Однажды Рауль Юссон, один из собравшихся, в шутку переоделся бородатым профессором, взобрался на кафедру и принялся «читать лекцию», громоздя при этом одну ошибку на другую. В задачу слушателей входило разоблачение этих ошибок. Все нашли это развлечение очень остроумным. Больше всего слушателям тогда понравилась бредовая формулировка, которую самозваный профессор назвал «теоремой Бурбаки». Собственно, каждую свою вымышленную теорему Рауль Юссон называл каким-нибудь громким именем фиктивного математика. На самом деле он использовал для этого имена генералов французской армии. Теорему Бурбаки он, например, назвал по имени сражавшегося во время Франко-прусской войны 1870–1871 гг. генерала Шарля Дени Бурбаки. В память о своих тогдашних студенческих выходках теперешние юные профессора, сидевшие в кафе «Капулад», решили спрятаться за псевдонимом Бурбаки: вымышленный математик Никола Бурбаки должен был как автор украсить титул нового учебника. Позже они утверждали, что этот Никола Бурбаки был членом Академии наук Нанкаго. Собственно, Нанкаго был реальным городом не в большей степени, чем математик Бурбаки — реальным человеком. Это был неологизм, сфабрикованный из названий Нанси и Чикаго, названий двух университетских городов, где работали некоторые члены группы, скрывавшейся за псевдонимом Бурбаки.
Поначалу Бурбаки был уверен (мы не станем портить игру и притворимся, что такой математик действительно жил на свете), что напишет новый учебник за три года. Однако задача оказалась более трудоемкой, чем выглядела первоначально. Только в 1939 г. увидели свет первые тома монументального труда, озаглавленного «Начала математики» (Éléments de mathématique). В течение нескольких десятилетий продолжали выходить следующие тома «Начал математики». Эта работа так и не была окончена. Она официально скончалась, потому что ни один из членов группы был уже не в состоянии сохранять цельность и последовательность изложения. «Бурбаки — это динозавр, у которого слишком велико расстояние от головы до хвоста», — цинично заметил по этому поводу Пьер Картье, бывший членом группы Бурбаки с 1955 по 1983 г. В неизвестно кем составленном гротескном некрологе было объявлено, что Никола Бурбаки мирно скончался в Нанкаго 11 ноября 1968 г. и что погребение состоится 23 ноября в 15 часов, на «Кладбище случайных переменных».
Своим названием «Начала математики» Никола Бурбаки напоминают «Начала», первую в истории человечества книгу по математике, написанную греческим ученым Евклидом. Попутно заметим, что некоторые историки науки утверждают, что на самом деле не существовало никакого Евклида и что под этим именем скрывался коллектив ученых античной Александрии.
33
Сразу после окончания Первой мировой войны, еще до того, как Вейль написал свою пристрастную, направленную против позиции Гильберта статью, произошло одно событие, которое, при иных обстоятельствах, могло бы изменить лицо математики ХХ столетия. Дело в том, что, несмотря на расхождения во взглядах на бесконечное, Гильберт очень высоко ценил своего голландского коллегу Брауэра за его математические труды, считая его глубоким мыслителем и выдающимся ученым. Если бы они, прежде чем исступленно вгрызться в свои позиции, смогли лично встретиться и побеседовать, то, возможно, не только Вейль, но и его учитель Давид Гильберт убедился бы в правоте Брауэра. Такая возможность была, когда Брауэр, во время летних каникул, будучи в Швейцарии, посетил Вейля и воодушевил его своими воззрениями на бесконечное. Гильберт был в гостях у Вейля всего за пару дней до этого, и Брауэр послал ему открытку, в которой глубоко сожалел о том, что им не удалось встретиться лично…
34
Научный спор между Брауэром и Гильбертом начал перерастать в личную ссору, и оба математика, независимо друг от друга, обратились к Альберту Эйнштейну с просьбой выступить третейским судьей в конфликте. Эйнштейн отклонил предложение на том основании, что ему тяжело разбираться в основаниях математики, а о самом конфликте отозвался как о «войне мышей и лягушек».
35
Попытка проанализировать здесь методы Гёделя завела бы нас слишком далеко. О них подробно пишет Герман Вейль в своей переработанной книге «Философия математики и естествознания» (Philosophie der Mathematik und Naturwissenschaft). Достаточно будет сказать, что основная мысль Гёделя заключается в том, чтобы закодировать высказывания о формальной системе так, чтобы они превратились в арифметические высказывания и тем самым автоматически включились бы в систему. Примечательно, что такое кодирование выполняется с помощью простых чисел. Таким образом, простые числа играют выдающуюся роль и в изобретенном Гёделем «шифровании», которое сегодня называют «гёделизацией».
Читать дальшеИнтервал:
Закладка: