РАЛЬФ РАЛЬФ ВИНС - Математика управления капиталом. Методы анализа риска для трейдеров и портфельных менеджеров

Тут можно читать онлайн РАЛЬФ РАЛЬФ ВИНС - Математика управления капиталом. Методы анализа риска для трейдеров и портфельных менеджеров - бесплатно ознакомительный отрывок. Жанр: Прочая научная литература, издательство Альпина Паблишер, год 2007. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Математика управления капиталом. Методы анализа риска для трейдеров и портфельных менеджеров
  • Автор:
  • Жанр:
  • Издательство:
    Альпина Паблишер
  • Год:
    2007
  • ISBN:
    ISBN 978-5-9614-0610-8
  • Рейтинг:
    5/5. Голосов: 11
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 100
    • 1
    • 2
    • 3
    • 4
    • 5

РАЛЬФ РАЛЬФ ВИНС - Математика управления капиталом. Методы анализа риска для трейдеров и портфельных менеджеров краткое содержание

Математика управления капиталом. Методы анализа риска для трейдеров и портфельных менеджеров - описание и краткое содержание, автор РАЛЬФ РАЛЬФ ВИНС, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

Математика управления капиталом. Методы анализа риска для трейдеров и портфельных менеджеров - читать онлайн бесплатно ознакомительный отрывок

Математика управления капиталом. Методы анализа риска для трейдеров и портфельных менеджеров - читать книгу онлайн бесплатно (ознакомительный отрывок), автор РАЛЬФ РАЛЬФ ВИНС
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Рисунок32 Асимметрия Рисунок33 Асимметричное распределение В - фото 77

Рисунок3-2 Асимметрия

Рисунок33 Асимметричное распределение В симметричном распределении среднее - фото 78

Рисунок3-3 Асимметричное распределение

В симметричном распределении среднее, медиана и мода имеют одинаковое значе­ние. Однако когда распределение имеет ненулевое значение асимметрии, оно может принять вид, показанный на рисунке 3-3. Для асимметричного распределения (лю­бого распределения с ненулевой асимметрией) верно равенство:

(3.08) Среднее - Мода = 3 * (Среднее - Медиана)

Есть много способов для расчета асимметрии, и они часто дают различные отве­ты. Ниже мы рассмотрим несколько вариантов:

(3.09) S == (Среднее - Мода) / Стандартное отклонение

(3.10) S = (3 * (Среднее - Медиана)) / Стандартное отклонение

Уравнения (3.09) и (3.10) дают нам первый и второй коэффициенты асимметрии Пирсона. Асимметрия также часто определяется следующим образом:

где S асимметрия N общее число точек данных Х значение соответствующее - фото 79

где S = асимметрия;

N = общее число точек данных;

Х = значение, соответствующее точке i;

А = среднее арифметическое значений точек данных;

D = стандартное отклонение значений точек данных.

И наконец, четвертый момент распределения, эксцесс (kurtosis) (см. рисунок 3-4), измеряет, насколько у распределения плоская или острая форма (по сравнению с нормальным распределением). Как и асимметрия, это безразмерная величина. Кривая, менее остроконечная, чем нормальная, имеет эксцесс отрицательный, а кривая, более остроконечная, чем нормальная, имеет эксцесс положительный. Когда пик кривой такой же, как и у кривой нормального распределения, эксцесс равен нулю, и мы будем говорить, что это распределение с нормальным эксцессом.

Как и предыдущие моменты, эксцесс имеет несколько способов расчета. Наи­более распространенными являются:

где К эксцесс Q семиинтерквартильная широта Р широта перцентиля - фото 80

где К = эксцесс;

Q == семи-интерквартильная широта;

Р = широта перцентиля 10-90.

(3.13) К = (1 / N (∑ (((X - А i) / D)^ 4))) - 3,

где К = эксцесс;

N = общее число точек данных;

Х = значение, соответствующее точке i;

А = среднее арифметическое значений точек данных;

D = стандартное отклонение значений точек данных.

Рисунок34 Эксцесс Наконец необходимо отметить что теория связанная с - фото 81

Рисунок3-4 Эксцесс

Наконец, необходимо отметить, что «теория», связанная с моментами распределе­ния, намного серьезнее, чем то, что представлено здесь. Для более глубокого пони­мания вам следует просмотреть книги по статистике, упомянутые в списке реко­мендованной литературы. Для наших задач изложенного выше вполне достаточно.

До настоящего момента рассматривалось распределение данных в общем виде. Теперь мы изучим нормальное распределение.

Нормальное распределение

Часто нормальное распределение называют распределением Гаусса, или Муавра, в честь тех, кто, как считается, открыл его — Карл Фридрих Гаусс (1777-1855) и, веком ранее, что не так достоверно, Авраам де Муавр (1667-1754). Нормальное распределение считается наиболее ценным распределением, благо­даря тому, что точно моделирует многие явления. Давайте рассмотрим приспособление, более известное как доска Галтона (ри­сунок 3-5). Это вертикально установленная доска в форме равнобедренного треу­гольника. В доске расположены колышки, один в верхнем ряду, два во втором, и так далее. Каждый последующий ряд имеет на один колышек больше. Колышки в сечении треугольные, так что, когда падает шарик, у него есть вероятность 50/50 пойти вправо или влево. В основании доски находится серия желобов для подсче­та попаданий каждого броска.

Рисунок35 Доска Галтона Шарики падающие через доску Галтона и достигающие - фото 82

Рисунок3-5 Доска Галтона

Шарики, падающие через доску Галтона и достигающие желобов, начинают фор­мировать нормальное распределение. Чем «глубже» доска (то есть чем больше ря­дов она имеет) и чем больше шариков бросается, тем ближе конечный результат будет напоминать нормальное распределение.

Нормальное распределение интересно еще и потому, что оно является пре­дельной формой многих других типов распределений. Например, если Х распре­делено биномиально, а N стремится к бесконечности, то Х стремится к нор­мальному распределению. Более того, нормальное распределение также является предельной формой многих других ценных распределений вероятности, таких как Пуассона, Стьюдента (или t-распределения). Другими словами, когда коли­чество данных (N), используемое в этих распределениях, увеличивается, они все более напоминают нормальное распределение.

Центральная предельная теорема

Одно из наиболее важных применений нормального распределения относится к распределению средних значений. Средние значения выборок заданного разме­ра, взятые таким образом, что каждый элемент выборки отобран независимо от других, дадут распределение, которое близко к нормальному Это чрезвычайно важный факт, так как он означает, что вы можете получить параметры действи­тельно случайного процесса из средних значений, рассчитанных на основе выбо­рочных данных.

Рисунок36 Экспоненциальное распределение и нормальное распределение Таким - фото 83

Рисунок3-6 Экспоненциальное распределение и нормальное распределение

Таким образом, мы можем сформулировать, что если N случайных выборок извлека­ются из совокупности всех данных, тогда суммы (или средние значения) выборок бу­дут приблизительно нормально распределяться независимо от распределения сово­купности, из которой взяты эти выборки. Близость к нормальному распределению увеличивается, когда N (число выборок) возрастает. В качестве примера рассмот­рим распределение чисел от 1 до 100. Это равномерное распределение, где все эле­менты (в данном случае числа) встречаются только раз. Например, число 82 встречается один раз, так же как и 19, и так далее. Возьмем выборку из пяти эле­ментов и среднее значение этих пяти элементов (мы можем также взять их сумму). Теперь поместим полученные пять элементов обратно, возьмем другую выборку и рассчитаем среднее. Если мы будем продолжать этот процесс дальше, то увидим, что полученные средние нормально распределяются, даже если совокупность, из которой они взяты, распределена равномерно.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


РАЛЬФ РАЛЬФ ВИНС читать все книги автора по порядку

РАЛЬФ РАЛЬФ ВИНС - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Математика управления капиталом. Методы анализа риска для трейдеров и портфельных менеджеров отзывы


Отзывы читателей о книге Математика управления капиталом. Методы анализа риска для трейдеров и портфельных менеджеров, автор: РАЛЬФ РАЛЬФ ВИНС. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x