РАЛЬФ РАЛЬФ ВИНС - Математика управления капиталом. Методы анализа риска для трейдеров и портфельных менеджеров

Тут можно читать онлайн РАЛЬФ РАЛЬФ ВИНС - Математика управления капиталом. Методы анализа риска для трейдеров и портфельных менеджеров - бесплатно ознакомительный отрывок. Жанр: Прочая научная литература, издательство Альпина Паблишер, год 2007. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Математика управления капиталом. Методы анализа риска для трейдеров и портфельных менеджеров
  • Автор:
  • Жанр:
  • Издательство:
    Альпина Паблишер
  • Год:
    2007
  • ISBN:
    ISBN 978-5-9614-0610-8
  • Рейтинг:
    5/5. Голосов: 11
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 100
    • 1
    • 2
    • 3
    • 4
    • 5

РАЛЬФ РАЛЬФ ВИНС - Математика управления капиталом. Методы анализа риска для трейдеров и портфельных менеджеров краткое содержание

Математика управления капиталом. Методы анализа риска для трейдеров и портфельных менеджеров - описание и краткое содержание, автор РАЛЬФ РАЛЬФ ВИНС, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

Математика управления капиталом. Методы анализа риска для трейдеров и портфельных менеджеров - читать онлайн бесплатно ознакомительный отрывок

Математика управления капиталом. Методы анализа риска для трейдеров и портфельных менеджеров - читать книгу онлайн бесплатно (ознакомительный отрывок), автор РАЛЬФ РАЛЬФ ВИНС
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

где М среднее абсолютное отклонение S стандартное отклонение Можно - фото 90

где М = среднее абсолютное отклонение;

S = стандартное отклонение.

Можно сказать, что при нормальном распределении среднее абсолютное откло­нение равно стандартному отклонению, умноженному на 0,7979.

(3.18) S = М * 1 / 0,7978845609

=М* 1,253314137, где S = стандартное отклонение;

М = среднее абсолютное отклонение.

Мы можем также сказать, что при нормальном распределении стандартное отклонение равно среднему абсолютному отклонению, умноженному на 1,2533. Так как дисперсия всегда является стандартным отклонением в квад­рате (а стандартное отклонение является квадратным корнем дисперсии), мы можем задать преобразование между дисперсией и средним абсолютным от­клонением.

(3.19) М = V ^ (1/2) * ((2 / 3,1415926536)^ (1/2))

= V ^(1/2)* 0,7978845609,

где М = среднее абсолютное отклонение;

V = дисперсия.

(3.20) V = (М * 1,253314137)^ 2,

где V =дисперсия;

М = среднее абсолютное отклонение.

Так как стандартное отклонение в стандартной нормальной кривой равно 1, мы можем сказать, что среднее абсолютное отклонение в стандартной нормальной кривой равно 0,7979. Более того, в колоколообразной кривой, подобной нормальной, семи-интер-квартильная широта равна приблизительно 2/3 стандартного отклонения, и поэто­му стандартное отклонение примерно в 1,5 раза больше семи-интерквартильной широты. Это справедливо для большинства колоколообразных распределений, а не только для нормальных, как и в случае с преобразованием среднего абсолютного отклонения в стандартное отклонение.

Нормальные вероятности

Теперь мы знаем, как преобразовывать наши необработанные данные в стан­дартные единицы и как построить кривую N'(Z) (т.е. как найти высоту кривой, или координату Y, для данной стандартной единицы), а также N'(X) (из уравнения (3.14), т.е. саму кривую без первоначального преобразования в стандар­тные единицы). Для практического использования нормального распределе­ния вероятности нам надо знать вероятность определенного результата. Это определяется не высотой кривой, а площадью под кривой. Эта площадь зада­ется интегралом функции N'(Z), которую мы до настоящего момента изучали. Теперь мы займемся N(Z), интегралом N'(Z), чтобы найти площадь под кри­вой (т.е. вероятности) [12] На самом деле, интеграл плотности нормального распределения вероятности нельзя pассчитать точно, но его можно с большой степенью точности получить с помощью уравнения (3.21). .

где Y112316419ABSZ и ABSQ функция абсолютного значения ЕХР - фото 91

где Y=1/(1+2316419*ABS(Z))

и ABSQ = функция абсолютного значения;

ЕХР() = экспоненциальная функция.

При расчете вероятности мы всегда будем преобразовывать данные в стандарт­ные единицы. То есть вместо функции N(X) мы будем использовать функцию

N(Z), где:

(3.16) Z=(X-U)/S,

где U = среднее значение данных;

S = стандартное отклонение данных;

Х = наблюдаемая точка данных.

Теперь обратимся к уравнению (3.21). Допустим, нам надо знать, какова вероят­ность события, не превышающего +2 стандартных единицы (Z = +2).

Y= 1/(1 +2316419*ABS(+2)) =1/1,4632838 =0,68339443311

(3.15a) N'(Z) = 0,398942 * ЕХР(-(+2^2/2))

= 0,398942 *ЕХР (-2)=0,398942*0,1353353=0,05399093525

Заметьте, мы можем найти высоту кривой при +2 стандартных единицах. Подставляя полученные значения вместо Y и N'(Z) в уравнение (3.21), мы можем получить вероятность события, не превышающего +2 стандартных единицы:

N(Z) = 1 - N'(Z) * ((1,330274429 * Y^ 5) -

- (1,821255978 * Y^4) + (1,781477937 * Y^ 3) -

- (0,356563782 * Y ^2) + (0,31938153 * Y))

= 1-0,05399093525* ((1,330274429* 0,68339443311^5)-

- (1,821255978 * 0,68339443311 ^ 4 + 1,781477937 * 0,68339443311^ 3) - - (0,356563782 * 0,68339443311 ^2) + 0,31938153 * 0,68339443311))

= 1 - 0,05399093525 * (1,330274429 * 0,1490587) -

- (1,821255978 * 0,2181151 + (1,781477937 * 0,3191643)-

- (0,356563782 * 0,467028 + 0,31938153 - 0,68339443311))

1- 0,05399093525 * (0,198288977 - 0,3972434298 + 0,5685841587 -

-0,16652527+0,2182635596)

= 1 - 0,05399093525 * 0,4213679955 = 1 - 0,02275005216= 0,9772499478

Таким образом, можно ожидать, что 97,72% результатов в нормально распреде­ленном случайном процессе не попадают за +2 стандартные единицы. Это изоб­ражено на рисунке 3-8.

Чтобы узнать, какова вероятность события, равного или превышающего за­данное число стандартных единиц (в нашем случае +2), надо просто изменить уравнение (3.21) и не использовать условие «Если Z < 0, то N(Z) = 1 - N(Z)». Поэтому вторая с конца строка в последнем расчете изменится с

= 1 - 0,02275005216 на 0,02275005216

Таким образом, с вероятностью 2,275% событие в нормально распределенном случайном процессе будет равно или превышать +2 стандартные единицы. Это показано на рисунке 3-9.

Рисунок 38 Уравнение 321 для вероятности Z2 Рисунок39 Устранение - фото 92

Рисунок 3-8 Уравнение (3.21) для вероятности Z=+2

Рисунок39 Устранение оговорки Если Z 0 то NZ 1 NZ в уравнении - фото 93

Рисунок3-9 Устранение оговорки «Если Z < 0, то N(Z) = 1 - N(Z)» в уравнении (3.21)

До сих пор мы рассматривали площади под кривой 1-хвостых распределений вероятности. То есть до настоящего момента мы отвечали на вопрос: «Какова вероятность события, которое меньше (больше) заданного количества стан­дартных единиц от среднего?» Предположим, теперь нам надо ответить на та­кой вопрос: «Какова вероятность события, которое находится в интервале между определенным количеством стандартных единиц от среднего?» Други­ми словами, мы хотим знать, как подсчитать 2-хвостые вероятности. Посмот­рим на рисунок 3-10. Он представляет вероятности события в интервале двух стандартных единиц от среднего. В отличие от рисунка 3-8 этот расчет вероят­ности не включает крайнюю область левого хвоста, область меньше -2 стан­дартных единиц. Для расчета вероятности нахождения в диапазоне Z стандар­тных единиц от среднего вы должны сначала рассчитать 1-хвостую вероят­ность абсолютного значения Z с помощью уравнения (3.21), а затем получен­ное значение подставить в уравнение (3.22), которое дает 2-хвостые вероятно­сти (то есть вероятности нахождения в диапазоне ABS(Z) стандартных единиц от среднего):

(3.22) 2-хвостая вероятность =1-((1- N(ABS(Z))) * 2)

Если мы рассматриваем вероятности наступления события в диапазоне 2 стандар­тных отклонений (Z = 2), то из уравнения (3.21) найдем, что N(2) = 0,9772499478 и можно использовать полученное значение для уравнения (3.22):

2-хвостая вероятность =1-((1- 0,9772499478) * 2) =1-(0,02275005216*2) = 1 - 0,04550010432 = 0,9544998957

Таким образом, из этого уравнения следует, что при нормально распределенном случайном процессе вероятность события, попадающего в интервал 2 стандарт­ных единиц от среднего, составляет примерно 95,45%.

Как и в случае с уравнением (3.21), можно убрать первую единицу в уравне­нии (3.22), чтобы получить (1 - N(ABS(Z))) * 2, что представляет вероятности события вне ABS(Z) стандартных единиц от среднего. Это отображено на рисун­ке 3-11. Для нашего примера, где Z = 2, вероятность события при нормально рас­пределенном случайном процессе вне 2 стандартных единиц составляет:

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


РАЛЬФ РАЛЬФ ВИНС читать все книги автора по порядку

РАЛЬФ РАЛЬФ ВИНС - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Математика управления капиталом. Методы анализа риска для трейдеров и портфельных менеджеров отзывы


Отзывы читателей о книге Математика управления капиталом. Методы анализа риска для трейдеров и портфельных менеджеров, автор: РАЛЬФ РАЛЬФ ВИНС. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x