РАЛЬФ РАЛЬФ ВИНС - Математика управления капиталом. Методы анализа риска для трейдеров и портфельных менеджеров

Тут можно читать онлайн РАЛЬФ РАЛЬФ ВИНС - Математика управления капиталом. Методы анализа риска для трейдеров и портфельных менеджеров - бесплатно ознакомительный отрывок. Жанр: Прочая научная литература, издательство Альпина Паблишер, год 2007. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Математика управления капиталом. Методы анализа риска для трейдеров и портфельных менеджеров
  • Автор:
  • Жанр:
  • Издательство:
    Альпина Паблишер
  • Год:
    2007
  • ISBN:
    ISBN 978-5-9614-0610-8
  • Рейтинг:
    5/5. Голосов: 11
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 100
    • 1
    • 2
    • 3
    • 4
    • 5

РАЛЬФ РАЛЬФ ВИНС - Математика управления капиталом. Методы анализа риска для трейдеров и портфельных менеджеров краткое содержание

Математика управления капиталом. Методы анализа риска для трейдеров и портфельных менеджеров - описание и краткое содержание, автор РАЛЬФ РАЛЬФ ВИНС, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

Математика управления капиталом. Методы анализа риска для трейдеров и портфельных менеджеров - читать онлайн бесплатно ознакомительный отрывок

Математика управления капиталом. Методы анализа риска для трейдеров и портфельных менеджеров - читать книгу онлайн бесплатно (ознакомительный отрывок), автор РАЛЬФ РАЛЬФ ВИНС
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Для того чтобы прояснить эту ситуацию, посмотрим на рисунок 4-1. Отметьте. что в точке А фактическая кривая находится выше теоретической. Поэтому мы сравниваем текущее значение фактической ФРВ с текущим теоретическим значе­нием для нахождения наибольшей разности. Однако в точке В фактическая кри­вая находится ниже теоретической. Поэтому мы сравниваем предыдущее факти­ческое значение с текущим теоретическим значением. Идея состоит в том, что в результате мы выберем наибольшую разность.

Для каждого стандартного значения нам надо взять абсолютное значение разно­сти между текущим значением фактической ФРВ и текущим значением теорети­ческой ФРВ. Нам также надо взять абсолютное значение разности между преды­дущим значением фактической ФРВ и текущим значением теоретической ФРВ. Повторив эту операцию для всех стандартных значений точек, где фактическая ФРВ делает скачок вверх на 1/N, и взяв наибольшую разность, мы определим пе­ременную D.

Рисунок 41 Тест КС Чем ниже значение D тем больше похожи два - фото 108

Рисунок 4-1 Тест К-С

Чем ниже значение D, тем больше похожи два распределения. Мы можем преоб­разовать значение D в уровень значимости с помощью следующей формулы:

где SIG уровень значимости для данного D и N D статистика КС N - фото 109

где SIG = уровень значимости для данного D и N;

D = статистика К-С;

N = количество сделок, по которым определена статистика К-С;

% = оператор, означающий остаток после деления. Здесь J%2 дает остаток после деления J на 2;

ЕХР() = экспоненциальная функция.

Нет необходимости суммировать значения J от 1 до бесконечности. Уравнение сходится (обычно очень быстро) к определенному значению. После того как пре­дел достигнут (согласно допуску, установленному пользователем), нет необходи­мости продолжать суммирование значений.

Рассмотрим уравнение (4.01) на примере. Допустим, у нас есть 100 сделок, а значение статистики К-С равно 0,04:

J1 = (1 % 2) * 4 - 2 * ЕХР(-2 * 1^2 * (100^(1/2) * 0,04) л2) =1*4-2* ЕХР(-2 * ^ 2 * (10 * 0,04)^ 2) = 2 * ЕХР(-2 * 1^2 * 0,^ 2) = 2*ЕХР(-2*1*0,16) = 2 * ЕХР(-0,32) = 2 * 0,726149 = 1,452298

Таким образом, нашим первым значением является 1,452298. Теперь прибавим следующее значение:

J2 = (2 % 2) * 4 - 2 * ЕХР(-2 * 2^ 2 * (100^ (1/2) * 0,04)^2) =0*4-2* ЕХР(-2 * 2^ 2 * (10 * 0,04)^ 2) = -2 * ЕХР(-2 * 2^ 2 * 0,4^ 2) = -2*ЕХР(-2*4*0,16) = -2*ЕХР(-1,28) = -2 * 0,2780373 = -0,5560746

Прибавив -0,5560746 к нашей текущей сумме 1,452298, мы получим новую теку­щую сумму 0,8962234. Затем снова увеличим J на 1, теперь оно будет равно 3, и решим уравнение. Получившееся значение прибавим к текущей сумме 0,8962234. Следует поступать таким образом и дальше, пока текущая сумма в пределах допуска не перестанет изменяться. В нашем примере предельное значе­ние будет равно 0,997. Этот ответ означает, что при 100 сделках и значении стати­стики К-С 0,04 мы можем быть уверены на 99,7%, что фактическое распределе­ние генерировано функцией теоретического распределения. Другими словами, мы можем быть на 99,7% уверены, что функция теоретического распределения представляет фактическое распределение. В данном случае это очень хороший уровень значимости.

Создание характеристической функции распределения

Нормальное распределение вероятности далеко не всегда является хорошей мо­делью распределения торговых прибылей и убытков. Более того, ни одно из рас­пространенных распределений вероятности не является идеальной моделью. По­этому мы должны сами создать функцию для моделирования распределения на­ших торговых прибылей и убытков.

Распределение изменений цены в общем случае относится к распределе­ниям Парето (см. приложение В). Распределение торговых P&L можно счи­тать трансформацией распределения цен. Эта трансформация является ре­зультатом торговых методов, когда трейдеры пытаются понизить свои убыт­ки и увеличить прибыли, следовательно, распределение торговых P&L можно отнести к распределениям Парето. Однако распределение, которое мы будем изу­чать, не является распределением Парето. Распределение Парето, как и все другие функции распределения, модели­рует определенное вероятностное явление. Оно моделирует распределение сумм независимых, идентично распределенных случайных переменных. Фун­кция распределения, которую мы будем изучать, не моделирует конкретное вероятностное явление. Она моделирует многие унимодальные функции рас­пределения. Поэтому она может повторить форму и плотность вероятности распределения Парето, а также любого другого унимодального распределения.

Теперь мы создадим эту функцию. Для начала рассмотрим следующее уравнение:

(4.02) Y=1/(X^ 2+1)

График этого уравнения — обычная колоколообразная кривая, симметрич­ная относительно оси Y, как показано на рисунке 4-2.

Таким образом, мы будем строить свои рассуждения, используя это общее уравнение. Переменную Х можно представить как число стандартных еди­ниц с каждой стороны от среднего, т.е. от оси Y. Мы можем использовать первый момент этого «распределения», расположение его среднего значения, добавив значение для изменения расположения на оси X. Уравнение изменится следую­щим образом:

(4.03) Y=1/(X-LOC^2+1),

где Y = ордината характеристической функции;

Х = количество стандартных отклонений;

LOC = переменная, задающая расположение среднего значения, первый момент распределения.

Рисунок 42LOC 0 SCALE I SKEW 0 KURT 2 Рисунок 43 LOC 05 - фото 110

Рисунок 4-2LOC = 0 SCALE = I SKEW = 0 KURT = 2

Рисунок 43 LOC 05 SCALE 1 SKEW 0 KURT 2 Таким образом если бы мы - фото 111

Рисунок 4-3 LOC =0,5, SCALE = 1, SKEW = 0, KURT= 2

Таким образом, если бы мы хотели изменить расположение, передвинув график влево на 0,5 единицы, мы бы установили LOC на -0.5. Этот график изображен на рисунке 4-3.

Таким же образом, если бы мы хотели сместить кривую вправо, то исполь­зовали бы положительное значение для переменной LOC. LOC с нулевым значением не будет смещать график, как показано на рисунке 4-2.

Показатель в знаменателе влияет на эксцесс. До настоящего момента экс­цесс был равен 2, но мы можем изменить его, изменив значение показателя. Те­перь формулу нашей характеристической функции можно записать следующим образом:

(4.04) Y = 1 / ((X - LOC)^ KURT + 1),

где Y == ордината характеристической функции;

Х = количество стандартных отклонений;

LOC = переменная, задающая расположение среднего значения, первый момент распределения;

KURT = переменная, задающая эксцесс, четвертый момент распределения.

Рисунки 4-4 и 4-5 показывают влияние эксцесса на нашу характеристическую функцию. Отметьте: чем выше показатель, тем более плосковерхое и тонкохвостое распределение (эксцесс меньше нормального), и чем меньше показа­тель, тем более острый верх и тем толще хвосты распределения (эксцесс боль­ше нормального). Чтобы не получить иррациональное число, когда KURT < 1, мы будем исполь­зовать абсолютное значение коэффициента в знаменателе. Это не повлияет на форму кривой. Таким образом, мы можем переписать уравнение (4.04) следую­щим образом:

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


РАЛЬФ РАЛЬФ ВИНС читать все книги автора по порядку

РАЛЬФ РАЛЬФ ВИНС - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Математика управления капиталом. Методы анализа риска для трейдеров и портфельных менеджеров отзывы


Отзывы читателей о книге Математика управления капиталом. Методы анализа риска для трейдеров и портфельных менеджеров, автор: РАЛЬФ РАЛЬФ ВИНС. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x