РАЛЬФ РАЛЬФ ВИНС - Математика управления капиталом. Методы анализа риска для трейдеров и портфельных менеджеров

Тут можно читать онлайн РАЛЬФ РАЛЬФ ВИНС - Математика управления капиталом. Методы анализа риска для трейдеров и портфельных менеджеров - бесплатно ознакомительный отрывок. Жанр: Прочая научная литература, издательство Альпина Паблишер, год 2007. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Математика управления капиталом. Методы анализа риска для трейдеров и портфельных менеджеров
  • Автор:
  • Жанр:
  • Издательство:
    Альпина Паблишер
  • Год:
    2007
  • ISBN:
    ISBN 978-5-9614-0610-8
  • Рейтинг:
    5/5. Голосов: 11
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 100
    • 1
    • 2
    • 3
    • 4
    • 5

РАЛЬФ РАЛЬФ ВИНС - Математика управления капиталом. Методы анализа риска для трейдеров и портфельных менеджеров краткое содержание

Математика управления капиталом. Методы анализа риска для трейдеров и портфельных менеджеров - описание и краткое содержание, автор РАЛЬФ РАЛЬФ ВИНС, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

Математика управления капиталом. Методы анализа риска для трейдеров и портфельных менеджеров - читать онлайн бесплатно ознакомительный отрывок

Математика управления капиталом. Методы анализа риска для трейдеров и портфельных менеджеров - читать книгу онлайн бесплатно (ознакомительный отрывок), автор РАЛЬФ РАЛЬФ ВИНС
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Итак, лучше всего в этом случае использовать не эмпирическое, а пара­метрическое оптимальное f. Ситуация аналогична рассмотренному случаю с 20 бросками монеты в предыдущей главе. Если мы ожидаем 60% выигрышей в игре 1:1, то оптимальное f= 0,2. Однако если бы у нас были только эмпири­ческие данные о последних 20 бросках, 11 из которых были выигрышными, наше оптимальное f составило бы 0,1. Мы исходим из того, что параметрическое оптимальное f ($5062,71 в этом случае) верно, так как оно оптимально для функ­ции, которая «генерирует» сделки. Как и в случае только что упомянутой игры с броском монеты, мы допускаем, что оптимальное f для следующей сделки опре­деляется параметрической генерирующей функцией, даже если параметрическое f отличается от эмпирического оптимального f.

Очевидно, что ограничительные параметры оказывают большое влияние на оптимальное f. Каким образом выбирать эти ограничительные парамет­ры? Посмотрим, что происходит, когда мы отодвигаем верхнюю границу. Следующая таблица составлена для нижнего предела 3 сигма с использова­нием 100 равноотстоящих точек данных и оптимальных параметров для 232 сделок:

Верхняя граница f f$
3 Sigmas 0,206 $23783,17
4 Sigmas 0,588 $8332,51
5 Sigmas 0,784 $6249,42
6 Sigmas 0,887 $5523,73
7 Sigmas 0,938 $5223,41
8 Sigmas 0,963 $5087,81
* * *
* * *
* * *
100 Sigmas 0,999 $4904,46

Отметьте, что при постоянной нижней границе, чем выше мы отодвигаем верхнюю границу, тем ближе оптимальное f к 1. Таким образом, чем больше мы отодвигаем верхнюю границу, тем ближе оптимальное f в долларах будет к нижней границе (ожи­даемый проигрыш худшего случая). В том случае, когда наша нижняя граница нахо­дится на -3 сигма, чем больше мы отодвигаем верхнюю границу, тем ближе в пределе оптимальное f в долларах будет к нижней границе, т.е. к $330,13 -(1743,23 * 3) = = -$4899,56. Посмотрите, что происходит, когда верхняя граница не меняется (3 сигма), а мы отодвигаем нижнюю границу Достаточно быстро арифметическое математи­ческое ожидание такого процесса оказывается отрицательным. Это происходит потому, что более 50% площади под характеристической функцией находится слева от вертикальной оси. Следовательно, когда мы отодвигаем нижний ограни­чительный параметр, оптимальное f стремится к нулю. Теперь посмотрим, что произойдет, если мы одновременно начнем отодвигать оба ограничительных параметра. Здесь мы используем набор оптимальных пара­метров 0,02, 2,76, 0 и 1,78 для распределения 232 сделок и 100 равноотстоящих точек данных:

Верхняя и нижняя граница F f$
3 Sigmas 0,206 $23783,17
4 Sigmas 0,158 $42 040,42
5 Sigmas 0,126 $66 550,75
6 Sigmas 0,104 $97 387,87
* * *
* * *
* * *
100 Sigmas 0,053 $322625,17

Отметьте, что оптимальное f приближается к 0, когда мы отодвигаем оба ограни­чительных параметра. Более того, так как проигрыш наихудшего случая увеличи­вается и делится на все меньшее оптимальное f, наше f$, т.е. сумма финансирова­ния 1 единицы, также приближается к бесконечности.

Проблему наилучшего выбора ограничительных параметров можно сфор­мулировать в виде вопроса: где могут произойти в будущем наилучшие и наи­худшие сделки (когда мы будем торговать в этой рыночной системе)? Хвосты распределения в действительности стремятся к плюс и минус бесконечности, и нам следует финансировать каждый контракт на бесконечно большую сум­му (как в последнем примере, где мы раздвигали обе границы). Конечно, если мы собираемся торговать бесконечно долгое время, наше оптимальное f в долларах будет бесконечно большим. Но мы не собираемся торговать в этой рыночной системе вечно. Оптимальное f, при котором мы собираемся торговать в этой рыночной системе, является функцией предполагаемых наилучших и наи­худших сделок. Вспомните, если мы бросим монету 100 раз и запишем, какой будет самая длинная полоса решек подряд, а затем бросим монету еще 100 раз, то полоса ре­шек после 200 бросков будет скорее всего больше, чем после 100 бросков. Таким же образом, если проигрыш наихудшего случая за нашу историю 232 сделок равнялся 2,96 сигма (для удобства возьмем 3 сигма), тогда в будущем мы должны ожидать проигрыш больше 3 сигма. Поэтому вместо того, чтобы ограничить наше распределение прошлой историей сделок (-2,96 и +6,94 сигма), мы огра­ничим его -4 и +6,94 сигма. Нам, вероятно, следует ожидать, что в будущем именно верхняя, а не нижняя граница будет нарушена. Однако это обстоятель­ство мы не будем принимать в расчет по нескольким причинам. Первая состоит в том, что торговые системы в будущем ухудшают свою результативность по сравнению с работой на исторических данных, даже если они не используют оп­тимизируемых параметров. Все сводится к принципу, что эффективность меха­нических торговых систем постепенно снижается. Во-вторых, тот факт, что мы платим меньшую цену за ошибку в оптимальном f при смещении влево, а не вправо от пика кривой f, предполагает, что следует быть более консервативными в прогнозах на будущее. Мы будем рассчитывать параметрическое оптимальное f при ограничи­тельных параметрах -4 и +6,94 сигма, используя 300 равноотстоящих точек данных. Однако при расчете вероятностей для каждой из 300 равноотстоя­щих ячеек данных важно, чтобы мы рассмотрели распределение на 2 сигмы до и после выбранных ограничительных параметров. Поэтому мы будем оп­ределять ассоциированные вероятности, используя ячейки в интервале от -6 до +8,94 сигма, даже если реальный интервал -4 — +6,94 сигма. Таким образом, мы увеличим точность результатов. Использование оптимальных параметров 0,02, 2,76, 0 и 1,78 теперь даст нам оптимальное f =0,837, или 1 контракт на каждые 7936,41 доллара. Пока ограничительные параметры не нарушаются, наша модель точна для выбранных границ. Пока мы не ожидаем проигрыша больше 4 сигма ($330,13 -(1743,23 * 4) =-$6642,79) или прибыли больше 6,94 сигма ($330,13 + + (1743,23 * 6,94) = $12 428,15), можно считать, что границы распределения бу­дущих сделок выбраны точно. Возможное расхождение между созданной моделью и реальным распределе­нием является слабым местом такого подхода, то есть оптимальное f, полученное из модели, не обязательно будет оптимальным. Если наши выбранные параметры будут нарушены в будущем, f может перестать быть оптимальным. Этот недоста­ток можно устранить с помощью опционов, которые позволяют ограничить воз­можный проигрыш заданной суммой. Коль скоро мы обсуждаем слабость данного метода, необходимо указать на последний его недостаток. Следует иметь в виду, что реальное распределение торговых прибылей и убытков является распределением, где параметры по­стоянно изменяются, хотя и медленно. Следует периодически повторять на­стройку по торговым прибылям и убыткам рыночной системы, чтобы отслежи­вать эту динамику.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


РАЛЬФ РАЛЬФ ВИНС читать все книги автора по порядку

РАЛЬФ РАЛЬФ ВИНС - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Математика управления капиталом. Методы анализа риска для трейдеров и портфельных менеджеров отзывы


Отзывы читателей о книге Математика управления капиталом. Методы анализа риска для трейдеров и портфельных менеджеров, автор: РАЛЬФ РАЛЬФ ВИНС. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x