Владимир Живетин - Системы аэромеханического контроля критических состояний
- Название:Системы аэромеханического контроля критических состояний
- Автор:
- Жанр:
- Издательство:Институт проблем риска, ООО Информационно-издательский центр «Бон Анца»
- Год:2010
- Город:Москва
- ISBN:978-5-98664-060-0, 978-5-903140-40-4
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Владимир Живетин - Системы аэромеханического контроля критических состояний краткое содержание
Монография предназначена для специалистов в области контроля и управления самолетом.
Системы аэромеханического контроля критических состояний - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
В наибольшей степени человеческий фактор проявляется в летных происшествиях, связанных с потерей пространственного положения, сваливанием, превышением установленных предельных ограничений (15 % от общего количества катастроф), а также связанных со столкновениями исправных воздушных судов с возвышенностями (также 15 % катастроф за период с 1958 по 2001 год). Основными причинами таких происшествий являются:
– неумение экипажей выводить самолет из сложного пространственного положения;
– неумение экипажей распознавать ненормальную работу пилотажно-навигационного комплекса;
– отсутствие контроля за параметрами полета в процессе возникновения и развития особой ситуации;
– неправильная работа с функциональными системами самолета, в том числе:
– невключение авиагоризонтов перед взлетом;
– невключение обогрева приемников полного давления;
– запрещенная перекачка топлива в полете из одной группы баков в другую;
– пропуск операций (невыпуск закрылков перед взлетом, нерасстопоривание рулей перед взлетом, невключение реверса тяги двигателей на посадке, невключение противообледенительной системы в условиях обледенения);
– неправильное выполнение операций (неправильный ввод координат радиомаяка в вычислитель бортовой навигационной системы);
– непреднамеренное включение или выключение той или иной функциональной системы в полете (выпуск интерцепторов на взлете, включение реверса тяги двигателя в воздухе, выключение питания авиагоризонта и др.).
Следует отметить огромное значение психоэмоционального фактора в стрессовых ситуациях, которые возникают в процессе полета при неполадках, угрожающих опасной ситуацией и тем более катастрофой. При этом разрушаются стереотипы управления экипажем воздушного судна, наработанные в процессе обучения и полетов. Возможно, это является основной причиной того, что доля негативного влияния человеческого фактора на уровень безопасности полетов (75–80 %) долгие годы сохранялась во всем мире независимо от степени совершенства системы обучения.
Согласно рекомендации Международного авиационного комитата по расширению комплекса технических средств, позволяющих свести к минимуму влияние перечисленных выше ошибочных действий экипажей воздушных судов, сюда относятся:
– усовершенствованные световые и звуковые сигнализаторы режимов работы систем и выхода параметров за ограничения;
– расширенная номенклатура бортовых устройств, подсказывающих экипажу необходимость выполнения определенных действий;
– блокировки, предотвращающие неправильное использование систем;
– активные средства вмешательства в парирование особых ситуаций.
Программные мероприятия, направленные на снижение негативного влияния человеческого фактора на безопасность полетов:
а) раннее предупреждение экипажа о возможности столкновения воздушного судна с землей за счет использования спутниковых навигационных систем и цифровых трехмерных карт местности;
б) раннее предупреждение экипажа о возможности потери воздушным судном пространственной ориентации (в том числе о возможности сваливания) за счет более совершенных алгоритмов обработки информации по сравнению с реализованными в штатных системах типа автомата углов атаки и сигнализации перегрузок (АУАСП) и системы предупреждения критических режимов (СПКР), учета факторов, характеризующих конкретные условия полета;
в) измерение массы и центровки воздушного судна на стоянке и в полете;
г) автоматический контроль параметров разбега и взлета (скорости, ускорения, пройденного на взлетно-посадочной полосе расстояния) с выдачей сигнала на прекращение взлета при их несоответствии нормативным значениям;
д) организация в рамках интегрированного комплекса авионики бортовой электронной библиотеки (электронное руководство по летной эксплуатации) с функцией автоматического контроля правильности выполнения экипажем нормативной последовательности операций по управлению воздушным судном на всех этапах полета;
е) блокировка операций по управлению воздушным судном, которые могут привести к развитию осложненных ситуаций в катастрофические (например, блокировка отключения нормально работающих двигателей при отказе или пожаре в одном из двигателей);
ж) предоставление экипажу воздушного судна информации, предупреждающей об опасности в более эффективных форматах, например замена штатной сигнализации АУАСП и СПКР на комплексную визуально-звуковую (в том числе речевую) сигнализацию с нарастающей интенсивностью по мере развития опасной ситуации, а также с сообщением о лимите времени до возможного катастрофического финала и с выдачей команд по его предотвращению.
Сваливание есть один из основных факторов, когда роль пилота в предотвращении сваливания очень важна. Приведем причины сваливания.
1. Наиболее часто возникают катастрофы по причине сваливания на этапах:
– взлета;
– посадки.
2. Факторы, обусловливающие сваливание:
– вертикальные потоки большой мощности на обе или одну несущую поверхность;
– резко изменяется состояние поля сил аэродинамического давления и соответственно аэродинамические силы на несущих поверхностях ЛА.
3. Не все параметры траектории, изменяющиеся в процессе сваливания, когда реализуется пространственное движение, контролируются бортовым комплексом.
Так, информация J, поступающая пилоту, включает: θ, γ, β, ω x , ω y , ω z , однако угол атаки при этом не контролируется.
На следующих этапах формируются погрешности контроля и управления.
4. Полученная пилотом информация характеризует пространственное положение ЛА, а у него есть четыре органа управления: δ рв , δ э , δ рн , δ дв , которые могут изменять аэродинамические силы несущих поверхностей, т. е. предотвращать сваливание.
5. Одновременно на информацию J ф , получаемую пилотом от приборов, накладываются его собственные ощущения в виде информации J изм о пространственном состоянии ЛА, формируемой его органами и анализируемой его интеллектуальной системой.
В итоге формируются ошибки восприятия информации, роль которых в авиационных происшествиях следующая:

6. На следующем этапе реализуется синтез цели, которую пилот создает для предотвращения сваливания. Синтез формируется разумом [16], представляющим собой биокомпьютер с соответствующей программой, формирующей образные пространственные модели взаимосвязи J ф ( J изм ) и поля сил аэродинамического давления путем синтеза. Эта процедура реализуется практически мгновенно в силу свойств разума пилота. Однако формирование процедуры управления реализуется с ошибкой, роль которой в авиационных происшествиях приведена в таблице 2 [15].
Читать дальшеИнтервал:
Закладка: