Игорь Дмитриев - Квантовая химия — ее прошлое и настоящее. Развитие электронных представлений о природе химической связи
- Название:Квантовая химия — ее прошлое и настоящее. Развитие электронных представлений о природе химической связи
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:1980
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Игорь Дмитриев - Квантовая химия — ее прошлое и настоящее. Развитие электронных представлений о природе химической связи краткое содержание
Квантовая химия — ее прошлое и настоящее. Развитие электронных представлений о природе химической связи - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Как гибридные АО h iC, так и локализованные преобразуются по приводимому четырехмерному представлению группы Т d: при операциях симметрии, образующих эту группу,
либо не изменяется, либо переводится в другую локализованную МО. Именно в этом смысле гибридные АО h iC и локализованные
называются эквивалентными. Легко видеть, что
могут быть отнесены к отдельным связям С-H i, и их локализация на отдельных связях будет тем более строгой, чем меньше разность |b-d|. Локализацию можно считать абсолютной, если а = с и b = d, но в действительности эти равенства не выполняются строго.
Каждой из эквивалентных локализованных МО соответствует одно общее значение одноэлектронной энергии:
(4.25)
(4.26)
которому, однако, нельзя сопоставить потенциал ионизации или иную наблюдаемую характеристику молекулы.
Следует отметить также тесную связь понятий локализации МО и гибридизации АО, которую иллюстрирует рассмотренный выше пример. Гибридизация АО должна обеспечивать представление локализованных молекулярных орбиталей минимальным числом базисных гибридных атомных орбиталей. В свою очередь каждая гибридная АО должна участвовать в минимальном числе локализованных МО.
Как правило, построение локализованных МО из одних лишь соображений симметрии не является возможным и необходимо привлечение дополнительных критериев и определенной методики локализации. К настоящему времени разработано несколько методов преобразования канонических МО, найденных тем или иным путем, в МО, локализованные на отдельных атомах и связях. Некоторые из этих методов мы рассмотрим ниже.
Методы Эдмистона-Рюденберга и Бойса.В методе, предложенном Эдмистоном и Рюденбергом [38], определяются ор-битали самосогласованного поля, которые отделены друг от друга насколько это возможно, хотя на них заранее не накладывается условие определенной локализации в пространстве или на отдельных атомах и связях.
Среднее межорбитальное разделение характеризуется суммой кулоновских двухэлектронных интегралов:
(4.27)
причем унитарное преобразование локализации
(4.28)
должно обеспечивать минимальность величины J (2). В силу равенства
(4.29)
и инвариантности первой суммы в правой части этого равенства относительно преобразования (4.28) минимум величины J (2)соответствует максимуму
(4.30)
J (1)характеризует в среднем плотность орбиталей f iв смысле интеграла
(4.31)
определяющего энергию отталкивания двух электронов, находящихся в одном и том же i-м одноэлектронном состоянии, заданном орбиталью f i. Из равенства
(4.32)
и инвариантности следует далее, что минимум J (2)и максимум J (1)обеспечивают минимальное значение суммы обменных двухэлектронных интегралов:
(4.33)
На возможность использования энергии обменного взаимодействия К в качестве критерия локализации МО указывали Леннард-Джонс и Попл. Минимизация К позволяет максимально приблизить выражение для энергии электронного взаимодействия к виду, соответствующему аппроксимации многоэлектронной функции простым произведением спин-орбиталей. В этом случае каждому электрону, точнее каждой паре электронов, можно приписать определенную локализованную орбиталь. Такое соответствие между электронами и орбиталями нарушается при антисимметризации N-электронной функции-произведения, т. е при учете неразличимости электронов и связанной с ней антисимметричностью точной многоэлектронной функции относительно перестановок электронов.
Об уменьшении при локализации МО обменной энергии электронного взаимодействия, а также об увеличении J (1)и уменьшении J (2)по сравнению со значениями, соответствующими каноническим МО, можно судить по данным табл. 4, полученным в работе [82] для гидридов бора.
Таблица 4. J (1) , J(2) и K для исходных канонических и локализованных МО
В табл. 5 приведены результаты Эдмистона и Рюденберга по локализации МО в молекулах N 2, СО и BF. Первая из этих молекул характеризуется симметрией D ∞h, гетеронуклеарные СО и BF — симметрией C ∞ν. Их канонические МО должны поэтому классифицироваться на σ- и π-орбитали. Каждая из рассматриваемых изоэлектронных молекул содержит десять электронов в σ-системе и четыре — в π-системе. Четыре из десяти σ-электронов принадлежат атомным остовам в том смысле, что описываются МО (iA), локализованными на внутренних (остовных) σ-оболочках. Эти орбитали практически идентичны атомным 1s-орбиталям. Следующие четыре σ-электрона описываются локализованными МО (lА), представляющими неподеленные электронные пары атомов. Оставшиеся два электрона должны относиться, очевидно, к связывающей σ-орбитали. Однако локализация МО по методу Эдмистона и Рюденберга приводит к связывающим МО иной симметрии. Эти локализованные МО (b i) не могут быть отнесены ни к σ-, ни к π-типу. Они образуют систему трех эквивалентных, так называемых банановых МО, переводящихся друг в друга преобразованиями группы С 3υи определяемых с точностью до произвольного поворота относительно молекулярной оси. В ряду молекул N 2, CO, BF характер трех эквивалентных связывающих МО b iмонотонно меняется от строго ковалентного для N 2до существенно поляризованного в направлении атома фтора для молекулы BF. В последнем случае они подобны неподеленным парам атома фтора.
Читать дальшеИнтервал:
Закладка: