Николай Глинка - Общая химия
- Название:Общая химия
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:неизвестен
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Николай Глинка - Общая химия краткое содержание
Учебное пособие предназначено для студентов нехимических специальностей высших учебных заведений. Оно может служить пособием для лиц, самостоятельно изучающих основы химии, и для учащихся химических техникумов и старших классов средней школы.
Легендарный учебник, переведенный на многие языки стран Европы, Азии, Африки и выпущенный общим тиражом свыше 5 миллионов экземпляров.
При изготовлении файла, использован сайт http://alnam.ru/book_chem.php
Общая химия - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Наиболее крупные месторождения графита образовались в результате воздействия высоких температур и давления на каменные угли. Залежи графита имеются в различных районах СССР.
Уголь, тоже состоящий из углерода, получается искусственным путем. Однако в природе есть вещества, близкие по своему составу к углю. Таковы различные виды ископаемого угля, образующие во многих местах земного шара мощные отложения. Некоторые из ископаемых углей содержат до 99% углерода.
Соединения углерода очень распространены. Кроме ископаемого угля, в недрах Земли находятся большие скопления нефти, представляющей сложную смесь различных углеродсодержащих соединений, преимущественно углеводородов. В земной коре встречаются в огромных количествах соли угольной кислоты, особенно карбонат кальция. В воздухе всегда имеется диоксид углерода. Наконец, растительные и животные организмы состоят из веществ, в образовании которых главное участие принимает углерод. Таким образом, этот элемент — один из распространенных на Земле, хотя общее его содержание в земной коре составляет всего около 0.1%.
По многочисленности и разнообразию своих соединений углерод занимает среди других элементов совершенно особое положение. Число изученных соединений углерода оценивают в настоящее время примерно в два миллиона, тогда как соединения всех остальных элементов, вместе взятые, исчисляются лишь сотнями тысяч.
Многообразие соединений углерода объясняется способностью его атомов связываться между собой с образованием длинных цепей или колец (см. § 162).
153. Аллотропия углерода.
В свободном состоянии углерод известен в виде алмаза, кристаллизующегося в кубической системе, и графита, принадлежащего к гексагональной системе. Такие формы его, как древесный уголь, кокс, сажа, имеют неупорядоченную структуру.
- 419 -
Рис. 117. Структура алмаза. Стрелки показывают связи между атомами в тетраэдрах.
Синтетически получены карбин и поликумулен — разновидности углерода, состоящие из линейных цепных полимеров типа ... -C≡C-C≡C... или ...=C=C=C=... Карбин обладает полупроводниковыми свойствами. При сильном нагревании без доступа воздуха он превращается в графит.
Алмаз — бесцветное, прозрачное вещество, чрезвычайно сильно преломляющее лучи света. Он кристаллизуется в кубической гранецентрированной решетке. При этом одна половина атомов располагается в вершинах и центрах граней одного куба, а другая — в вершинах и центрах граней другого куба, смещенного относительно первого в направлении его пространственной диагонали. Атомы углерода в алмазе находятся в состоянии sp 3-гибридизации и образуют трехмерную тетраэдрическую сетку, в которой они связаны друг с другом ковалентными связями*. Расстояние между атомами в тетраэдрах равно 0.154 нм. Структура алмаза показана На рис. 117.
* Подобное тетраэдрическое расположение связей, образуемых атомом углерода, характерно также для передельных углеводородов и их производных (см. § 162).
Из всех простых веществ алмаз имеет максимальное число атомов, приходящихся на единицу объема, — атомы углерода «упакованы» в алмазе очень плотно. С этим, а также с большой прочностью связи в углеродных тетраэдрах связано то, что по твердости алмаз превосходит все известные вещества. Поэтому его широко применяют в промышленности; почти 80% добываемых алмазов используются для технических целей. Его используют для обработки различных твердых материалов, для бурения горных пород. Будучи весьма твердым, алмаз в то же время хрупок. Получающийся при измельчении алмаза порошок служит для шлифовки драгоценных камней и самих алмазов. Должным образом отшлифованные прозрачные алмазы называются бриллиантами.
Ввиду большой ценности алмазов было предпринято много попыток получить их искусственным путем из графита. Однако долгое время эти попытки кончались неудачей. Только в 1955 г., применив очень высокое давление (порядка 10 10Па) и длительный нагрев при температуре около 3000°C, американским, а одновременно и шведским ученым удалось получить синтетические алмазы. В Советском Союзе также разработан метод получения синтетических алмазов, а в 1961 г. начато их промышленное производство. Кроме того, в 1969 г. в СССР синтезированы нитевидные кристаллы алмаза, причем их получают при обычном давлении.
Рис. 118. Структура графита.
Нитевидные кристаллы, или "усы", имеют структуру, практически лишенную дефектов, и обладают очень высокой прочностью.
При прокаливании в кислороде алмаз сгорает, образуя диоксид углерода. Если сильно нагреть алмаз без доступа воздуха, то он превращается в графит.
Графит представляет собой темно-серые кристаллы со слабым металлическим блеском. Он имеет слоистую решетку. Все атомы углерода находятся здесь в состоянии sp 2-гибридизации: каждый из них образует три ковалентные σ-связи с соседними атомами, причем углы между направлениями связей равны 120°C. В результате возникает плоская сетка, составленная из правильных шестиугольников, в вершинах которых находятся ядра атомов углерода; расстояние между соседними ядрами составляет 0,1415 нм.
В образовании σ-связей участвуют три электрона каждого атома углерода. Четвертый электрон внешнего слоя занимает 2p-орбиталь, не участвующую в гибридизации. Такие негибридные электронные облака атомов углерода ориентированы перпендикулярно плоскости слоя и, перекрываясь друг с другом, образуют делокализованные π-связи. Структура графита показана на рис. 118.
Соседние слои атомов углерода в кристалле графита находятся на довольно большом расстоянии друг от друга (0,335 нм); это указывает на малую прочность связи между атомами углерода, расположенными в разных слоях. Соседние слои связаны между собой в основном силами Ван-дер-Ваальса, но частично связь имеет металлический характер, т. е. обусловлена «обобществлением» электронов всеми атомами кристалла. Этим объясняется сравнительно высокая электрическая проводимость и теплопроводность графита не только в направлении слоев, но и в перпендикулярном к ним направлении.
Рассмотренная структура графита обусловливает сильную анизотропию его свойств. Так, теплопроводность графита в направлении плоскости слоев равна 4.0 Дж/(см·с·К), а в перпендикулярном направлении составляет 0,79 Дж/(см·с·К). Электрическое сопротивление графита в направлении слоев в 10 4раз меньше, чем в перпендикулярном направлении.
Читать дальшеИнтервал:
Закладка: