Ричард Фейнман - Том 1. Механика, излучение и теплота

Тут можно читать онлайн Ричард Фейнман - Том 1. Механика, излучение и теплота - бесплатно полную версию книги (целиком) без сокращений. Жанр: sci-phys. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Том 1. Механика, излучение и теплота
  • Автор:
  • Жанр:
  • Издательство:
    неизвестно
  • Год:
    неизвестен
  • ISBN:
    нет данных
  • Рейтинг:
    3/5. Голосов: 11
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 60
    • 1
    • 2
    • 3
    • 4
    • 5

Ричард Фейнман - Том 1. Механика, излучение и теплота краткое содержание

Том 1. Механика, излучение и теплота - описание и краткое содержание, автор Ричард Фейнман, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

Том 1. Механика, излучение и теплота - читать онлайн бесплатно полную версию (весь текст целиком)

Том 1. Механика, излучение и теплота - читать книгу онлайн бесплатно, автор Ричард Фейнман
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Фиг 314 Волновые сигналы Из рисунка видно что для волны проходящей в - фото 807

Фиг. 31.4. Волновые «сигналы».

Из рисунка видно, что для волны, проходящей в среде с опережением по фазе, сигнал (т. е. начало волны) не опережает по времени сигнал источника.

Обратимся теперь снова к дисперсионной формуле. Следует помнить, что полученный нами результат несколько упрощает истинную картину явления. Чтобы быть точными, в формулу необходимо внести некоторые поправки. Прежде всего в нашу модель атомного осциллятора следует ввести затухание (иначе осциллятор, раз начав, будет колебаться до бесконечности, что неправдоподобно). Движение затухающего осциллятора мы уже изучали в одной из прошлых глав [см. уравнение (23.8)]. Учет затухания приводит к тому, что в формулах (31.16), а поэтому и в (31.19), вместо (ω 0 2-ω 2) появляется (ω 0 2-ω 2+iγω), где γ — коэффициент затухания.

Вторая поправка к нашей формуле возникает потому, что каждый атом обычно имеет несколько резонансных частот. Тогда вместо одного вида осцилляторов, нужно учесть действие нескольких осцилляторов с разными резонансными частотами, колебания которых происходят независимо друг от друга, и сложить вклады от всех осцилляторов.

Пусть в единице объема содержится N kэлектронов с собственной частотой (ω kи коэффициентом затухания γ k. Наша дисперсионная формула примет в результате вид

3120 Это окончательное выражение для показателя преломления справедливо - фото 808(31.20)

Это окончательное выражение для показателя преломления справедливо для большого числа веществ [23] Такая же формула получается и с помощью квантовой механики, однако интерпретация ее в этом случае иная. В квантовой механике даже одноэлектронный атом, например водород, имеет несколько резонансных частот. Поэтому вместо числа электронов N k с частотой ω k появляется множитель Nf k где N — число атомов в единице объема, а число f k (называемое силой осциллятора) указывает, с каким весом входит данная резонансная частота ω k . . Примерный ход показателя преломления с частотой, даваемый формулой (31.20), приведен на фиг. 31.5.

Фиг 315 Показатель преломления как функция частоты Вы видите что всюду - фото 809

Фиг. 31.5. Показатель преломления как функция частоты.

Вы видите, что всюду, за исключением области, где ω очень близко к одной из резонансных частот, наклон кривой положителен. Такая зависимость носит название «нормальной» дисперсии (потому что этот случай встречается наиболее часто). Вблизи резонансных частот кривая имеет отрицательный наклон, и в этом случае говорят об «аномальной» дисперсии (имея в виду «ненормальную» дисперсию), потому что она была наблюдена задолго до того, как узнали об электронах, и казалась в то время необычной. С нашей точки зрения, оба наклона вполне «нормальны»!

§ 4 Поглощение

Вы уже, наверное, заметили нечто странное в последней форме (31.20) нашей дисперсионной формулы. Из-за члена iγ, учитывающего затухание, показатель преломления стал комплексной величиной! Что это означает? Выразим n через действительную и мнимую части:

3121 причем n и n вещественны Перед in стоит знак минус а само n - фото 810(31.21)

причем n' и n" вещественны. (Перед in" стоит знак минус, а само n", как легко убедиться, положительно.)

Смысл комплексного показателя преломления легче всего понять, вернувшись к уравнению (31.6) для волны, проходящей сквозь пластинку с показателем преломления n. Подставив сюда комплексное n и произведя перегруппировку членов, получаем

3122 Множители обозначенные буквой В имеют прежний вид и как и раньше - фото 811(31.22)

Множители, обозначенные буквой В, имеют прежний вид и, как и раньше, описывают волну, фаза которой после прохождения пластинки запаздывает на угол ω( n '-1)Δ z / c . Множитель А (экспонента с действительным показателем) представляет нечто новое. Показатель экспоненты отрицателен, следовательно, А вещественно и меньше единицы. Множитель А уменьшает амплитуду поля; с ростом Δz величина А, а следовательно, и вся амплитуда падает. При прохождении через среду электромагнитная волна затухает. Среда «поглощает» часть волны. Волна выходит из среды, потеряв часть своей энергии. Этому не следует удивляться, потому что введенное нами затухание осцилляторов обусловлено силой трения и непременно приводит к потере энергии. Мы видим, что мнимая часть комплексного показателя преломления n" описывает поглощение (или «ослабление») электромагнитной волны. Иногда n" называют еще «коэффициентом поглощения».

Заметим также, что появление мнимой части n отклоняет стрелку, изображающую Е ана фиг. 31.3, к началу координат.

Отсюда ясно, почему поле ослабевает при прохождении через среду.

Обычно (как, например, у стекла) поглощение света очень мало. Именно так и получается по нашей формуле (31.20), потому что мнимая часть знаменателя iγ kω много меньше действительной части (ω k 2-ω 2). Однако когда частота ω близка к ω k, резонансный член (ω k 2-ω 2) оказывается мал по сравнению с iγ kω и показатель преломления становится почти чисто мнимым. Поглощение в этом случае определяет основной эффект. Именно поглощение дает в солнечном спектре темные линии. Свет, излучаемый поверхностью Солнца, проходит сквозь солнечную атмосферу (а также через атмосферу Земли), и частоты, равные резонансным частотам атомов в атмосфере Солнца, сильно поглощаются.

Наблюдение подобных спектральных линий солнечного света позволяет установить резонансные частоты атомов, а следовательно, и химический состав солнечной атмосферы. Точно так же по спектру звезд узнают состав звездного вещества. С помощью этих методов обнаружили, что химические элементы на Солнце и звездах не отличаются от земных.

§ 5. Энергия световой волны

Как мы видели, мнимая часть показателя преломления характеризует поглощение. Попробуем теперь вычислить энергию, переносимую световой волной. Мы высказали соображения в пользу того, что энергия световой волны пропорциональна —Е 2, среднему по времени от квадрата электрического поля волны. Ослабление электрического поля за счет поглощения волны должно приводить к потере энергии, переходящей в какое-то трение электронов и в конечном счете, как нетрудно догадаться, в тепло.

Взяв часть световой волны, падающую на единичную площадку, например на квадратный сантиметр поверхности нашей пластинки на фиг. 31.1, можно записать энергетический баланс в следующей форме (мы предполагаем, что энергия сохраняется!):

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Ричард Фейнман читать все книги автора по порядку

Ричард Фейнман - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Том 1. Механика, излучение и теплота отзывы


Отзывы читателей о книге Том 1. Механика, излучение и теплота, автор: Ричард Фейнман. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x