Ричард Фейнман - Том 1. Механика, излучение и теплота

Тут можно читать онлайн Ричард Фейнман - Том 1. Механика, излучение и теплота - бесплатно полную версию книги (целиком) без сокращений. Жанр: sci-phys. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Том 1. Механика, излучение и теплота
  • Автор:
  • Жанр:
  • Издательство:
    неизвестно
  • Год:
    неизвестен
  • ISBN:
    нет данных
  • Рейтинг:
    3/5. Голосов: 11
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 60
    • 1
    • 2
    • 3
    • 4
    • 5

Ричард Фейнман - Том 1. Механика, излучение и теплота краткое содержание

Том 1. Механика, излучение и теплота - описание и краткое содержание, автор Ричард Фейнман, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

Том 1. Механика, излучение и теплота - читать онлайн бесплатно полную версию (весь текст целиком)

Том 1. Механика, излучение и теплота - читать книгу онлайн бесплатно, автор Ричард Фейнман
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Отличается ли частота, наблюдаемая при нашем движении к источнику, от частоты, наблюдаемой при движении источника к нам? Конечно, нет! Теория относительности утверждает, что обе частоты должны быть в точности равны . Если бы мы были достаточно математически подготовлены, то могли бы убедиться, что оба математических выражения в точности равны! В действительности требование равенства обоих выражений часто используется для вывода релятивистского замедления времени, потому что без квадратных корней равенство сразу нарушается.

Раз уж мы начали говорить о теории относительности, приведем еще и третий способ доказательства, который покажется, пожалуй, более общим. (Суть дела остается прежней, ибо не играет роли, каким способом получен результат!) В теории относительности имеется связь между положением в пространстве и временем, определяемым одним наблюдателем, и положением и временем, определяемым другим наблюдателем, движущимся относительно первого. Мы уже выписывали эти соотношения (гл. 16). Они представляют собой преобразования Лоренца , прямые и обратные:

3415 Для неподвижного наблюдателя волна имеет вид cosωt kx все - фото 892(34.15)

Для неподвижного наблюдателя волна имеет вид cos(ωt- kx ); все гребни, впадины и нули описываются этой формой. А как будет выглядеть та же самая физическая волна для движущегося наблюдателя? Там, где поле равно нулю , любой наблюдатель при измерении получит нуль; это есть релятивистский инвариант. Следовательно, форма волны не меняется, нужно только написать ее в системе отсчета движущегося наблюдателя:

Произведя перегруппировку членов получим 3416 Мы снова получим волну в - фото 893

Произведя перегруппировку членов, получим

3416 Мы снова получим волну в виде косинуса с частотой ω в качестве - фото 894(34.16)

Мы снова получим волну в виде косинуса с частотой ω' в качестве коэффициента при t' и некоторой другой константой k' — коэффициентом при х'. Назовем k' (или число колебаний на 1 м) волновым числом для второго наблюдателя. Таким образом, движущийся наблюдатель отметит другую частоту и другое волновое число, определяемые формулами

3417 3418 Легко видеть что 3417 совпадает с формулой 3413 - фото 895(34.17)

3418 Легко видеть что 3417 совпадает с формулой 3413 полученной - фото 896(34.18)

Легко видеть, что (34.17) совпадает с формулой (34.13), полученной нами на основании чисто физических рассуждений.

§ 7. Четырехвектор (ω, k)

Соотношения (34.17) и (34.18) обладают весьма интересным свойством: новая частота ω' линейно связана со старой частотой ω и старым волновым числом k, а новое волновое число представляется в виде комбинации старого волнового числа и частоты. Далее, волновое число есть скорость изменения фазы с расстоянием, а частота — скорость изменения фазы со временем, и сами соотношения обнаруживают глубокую аналогию с преобразованиями Лоренца для координаты и времени: если ω сопоставить с t , а k с х / с 2, то новое ω' сопоставляется с t', a k' — с координатой х '/ с 2. Иначе говоря, при преобразовании Лоренца ω и k изменяются так же, как t и х. Эти величины ω и k составляют так называемый четырехвектор. Четырехкомпонентная величина, преобразующаяся как время и координаты, и есть четырехвектор. Здесь все правильно, за исключением одного — четырехвектор имеет четыре компоненты, а у нас фигурируют только две! Как уже говорилось, ω и k подобны времени и одной координате пространства; для введения двух остальных координат надо изучить распространение света в трехмерном пространстве.

Пусть задана система координат x, y, z и волна движется в пространстве с волновым фронтом (фиг. 34.11). Длина волны есть λ, а направление распространения волны не совпадает ни с одной осью координат.

Фиг 3411 Плоская волна движущаяся под углом Какой вид имеет формула - фото 897

Фиг. 34.11. Плоская волна, движущаяся под углом.

Какой вид имеет формула движения для такой волны? Ответ очевиден: это cos(ωt-ks), где k=2π/ λ a s (расстояние вдоль направления движения волны) — проекция вектора положения на направление движения. Запишем это следующим образом: пусть rесть вектор точки в пространстве, тогда s есть r· е k, где e k— единичный вектор в направлении движения волны. Иначе говоря, s равно rcos( r·e k), проекции расстояния на направление движения. Следовательно, наша волна описывается формулой cos(ωt-k er).

Оказывается очень удобным ввести вектор k, называемый волновым вектором; величина его равна волновому числу 2π/λ, а направление совпадает с направлением распространения волны

3419 Благодаря введению этого вектора волна приобретает вид cosωt k r - фото 898(34.19)

Благодаря введению этого вектора волна приобретает вид cos(ωt- k· r), или cos(ωt-k xx-k yy-k zz). Выясним смысл проекций k, например k x. Очевидно, k xесть скорость изменения фазы в зависимости от координаты х. Фиг 34.11 подсказывает нам, что фаза меняется с ростом х так, как если бы вдоль х бежала волна, но соответствующая ей длина волны оказывается больше по величине. «Длина волны в направлении х» больше истинной на множитель, равный секансу угла α между осью х и направлением движения истинной волны:

3420 Следовательно скорость изменения фазы обратно пропорциональная λ x - фото 899(34.20)

Следовательно, скорость изменения фазы, обратно пропорциональная λ x, в направлении х оказывается меньше на множитель cosα; но этот же множитель содержит и k x, равный модулю k, умноженному на косинус угла между kи осью х!

Итак, мы выяснили смысл волнового вектора, описывающего распространение волны в трехмерном пространстве. Четыре величины ω, k x, k y, k zпреобразуются в теории относительности как четырехвектор, причем ω соответствует времени, а k x, ky, k zсоответствуют x, y и z и компонентам четырехвектора.

Еще раньше, когда мы занимались теорией относительности (гл. 17), мы выяснили, что из четырехвекторов можно составить релятивистское штрихованное произведение. Взяв вектор положения x μ(где μ нумерует четыре компоненты — время и три пространственные) и волновой вектор k μ(где μ снова пробегает четыре значения), образуем штрихованное произведение х μи k μ, записываемое в виде ∑'k μх μ. Это произведение есть инвариант, не зависящий от выбора системы координат. Согласно определению штрихованного произведения, можно записать ∑'k μх μ. следующем виде:

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Ричард Фейнман читать все книги автора по порядку

Ричард Фейнман - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Том 1. Механика, излучение и теплота отзывы


Отзывы читателей о книге Том 1. Механика, излучение и теплота, автор: Ричард Фейнман. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x