Ричард Фейнман - Том 1. Механика, излучение и теплота

Тут можно читать онлайн Ричард Фейнман - Том 1. Механика, излучение и теплота - бесплатно полную версию книги (целиком) без сокращений. Жанр: sci-phys. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Том 1. Механика, излучение и теплота
  • Автор:
  • Жанр:
  • Издательство:
    неизвестно
  • Год:
    неизвестен
  • ISBN:
    нет данных
  • Рейтинг:
    3/5. Голосов: 11
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 60
    • 1
    • 2
    • 3
    • 4
    • 5

Ричард Фейнман - Том 1. Механика, излучение и теплота краткое содержание

Том 1. Механика, излучение и теплота - описание и краткое содержание, автор Ричард Фейнман, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

Том 1. Механика, излучение и теплота - читать онлайн бесплатно полную версию (весь текст целиком)

Том 1. Механика, излучение и теплота - читать книгу онлайн бесплатно, автор Ричард Фейнман
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Если мы просто приложим нагретое тело к холодному и больше ничего делать не будем, то, насколько известно, горячее тело никогда не станет горячее, а холодное — холоднее! Но если бы мы смогли произвести работу, отобрав тепло, скажем, у океана или от чего-нибудь еще, не изменив его температуры, то эту работу можно было бы, призвав на помощь трение, снова превратить в тепло, но уже при другой температуре. Например, второе плечо нашей воображаемой машины может тереться обо что-то, что и так уже нагрелось. Полный результат процесса в этом случае сводится к охлаждению «холодного» тела, в нашем случае океана, и нагреванию горячих трущихся частей машины. Гипотезу Карно, второй закон термодинамики, иногда формулируют так: тепло не может перетечь само собой от холодного тела к горячему. Но мы только что убедились в эквивалентности этих утверждений. Повторим их снова. Первое : нельзя осуществить процесс, единственным результатом которого является превращение тепла в работу при постоянной температуре. Второе : тепло не может перетечь само собой от холодного тела к горячему. Мы будем чаще пользоваться первой формулировкой.

Анализ работы тепловой машины, проделанный Карно, весьма похож на то, что мы делали в гл. 4 (вып. 1), когда изучали подъемные машины и рассуждали о законе сохранения энергии. Более того, приведенные там аргументы подсказаны аргументами Карно о работе тепловых машин. Поэтому некоторые рассуждения в этой главе покажутся вам уже знакомыми.

Предположим, что «котел» построенной нами тепловой машины поддерживается при температуре Т 1. За счет отнятого у котла тепла Q 1пар совершил работу W и выделил в «конденсоре» тепло Q 2[температура конденсора равна Т 2(фиг. 44.3)].

Фиг 443 Схема тепловой машины Карно не уточнил чему равно это тепло - фото 1149

Фиг. 44.3. Схема тепловой машины.

Карно не уточнил, чему равно это тепло, потому что не знал первого закона и не предполагал, что Q 2равно Q 1потому что не верил этому. Многие считали, что QQ 2одинаковы, так предписывала калорическая теория. Но Карно этого не предполагал, в этом одна из тонкостей его аргументов. Если же использовать первый закон, то мы найдем, что выделенное тепло Q 2равно теплу Q 1за вычетом совершенной работы:

443 Если бы наш процесс был циклическим и сконденсированная вода - фото 1150(44.3)

(Если бы наш процесс был циклическим и сконденсированная вода поступала бы снова в котел, то после каждого цикла при заданном количестве участвующей в цикле воды поглощалось бы тепло Q 1и производилась бы работа W .)

А теперь построим другую машину и посмотрим, не сможем ли мы совершить большую работу при том же количестве тепла, выделяемого при температуре T 1. В конденсоре будет поддерживаться та же температура Т 2. Мы используем то же тепло Q 1из котла и попытаемся совершать большую работу, чем та, которая была произведена старой паровой машиной. Для этого, быть может, придется использовать другую жидкость, скажем спирт.

§ 3. Обратимые машины

Давайте разберемся в наших машинах получше. Одно из свойств всех машин нам уже известно. Если в машине есть трение, то неизбежны потери энергии. Наилучшей машиной была бы машина вообще без трения. Предположим, что мы имеем дело с теми же идеальными машинами, что и при изучении закона сохранения энергии, т. е. машинами, которым совсем не надо преодолевать трения.

А теперь обсудим аналог движения без трения — «лишенный трения» перенос тепла. Если мы приложим горячее тело к телу, обладающему более низкой температурой, то возникнет тепловой поток. Тепло течет от горячего тела к холодному, и, чтобы повернуть поток вспять, нужно слегка изменить температуру какого-нибудь одного тела. Но машина, лишенная трения, будет под действием сколь угодно малой силы послушно двигаться туда, куда ей приказывают, а когда сила будет действовать в другую сторону, охотно последует за ней. Аналогом машины без трения может служить устройство, в котором бесконечно малые изменения температуры могут повернуть тепловой поток вспять. Если разность температур конечна, то это невозможно. Но если тепло течет между двумя телами практически при одинаковой температуре и достаточно бесконечно малого изменения температуры, чтобы поток повернул в любом направлении, то поток считается обратимым (фиг. 44.4).

Фиг 444 Обратимый перенос тепла Если нагреть слегка левую половину тела - фото 1151

Фиг. 44.4. Обратимый перенос тепла.

Если нагреть слегка левую половину тела, тепло потечет вправо; если чуть-чуть охладить левую половину, тепло устремится влево. Итак, оказалось, что идеальной машиной является так называемая обратимая машина, в которой любой процесс обратим в том смысле, что малейшие изменения условий работы могут заставить машину работать в обратном направлении. Это означает, что машина не должна ни в каком месте иметь трения; в такой машине не должно быть также места, где тепло резервуара или пар котла прямо соприкасались бы с какими-то более холодными или более горячими частями.

Займемся идеальной машиной, в которой обратимы все процессы. Чтобы показать, что создание такой машины в принципе возможно, мы просто приведем пример рабочего цикла, причем нас не интересует возможность его практической реализации, достаточно того, что с точки зрения Карно он обратим.

Предположим, что в цилиндре, оборудованном поршнем без трения, имеется газ. Это не обязательно идеальный газ. Содержимое цилиндра вообще не обязано быть газом. Но для определенности будем считать, что в цилиндре идеальный газ. Предположим еще, что имеются две тепловые подушки ТТ 2— два очень больших тела, поддерживаемых при определенных температурах TТ 2(фиг. 44.5).

Фиг 445 Шаги цикла Карно а шаг 1 Изотермическое расширения при T 1 - фото 1152

Фиг. 44.5. Шаги цикла Карно. а — шаг 1. Изотермическое расширения при T 1 , поглощается тепло Q 1 ; 6 — шаг 2. Адиабатическое расширение; температура падает от T 1 , до Т 2 ; в —шаг 3. Изотермическое сжатие при Т 2 ; выделяется тепло Q 2 ; г —шаг 4. Адиабатическое сжатие; температура поднимается от Т 2 , до T 1 .

Будем считать, что Т 1больше Т 2. Для начала нагреем газ и, положив цилиндр на подушку T 1, позволим газу расшириться. Пусть по мере притока тепла в газ поршень очень медленно выдвигается из цилиндра. Тогда можно поручиться, что температура газа не будет сильно отклоняться от Т 1. Если выдернуть поршень очень быстро, температура в цилиндре может упасть значительно ниже Т 1и процесс уже нельзя будет считать полностью обратимым. Если же мы будем медленно вытаскивать поршень, температура газа останется близкой к температуре Т 1. С другой стороны, если поршень медленно вдвигать обратно в цилиндр, температура станет лишь чуть-чуть повыше температуры Т 1и тепло потечет вспять. Вы видите, что такое изотермическое (при постоянной температуре) расширение может быть обратимым процессом, если только производить его медленно и осторожно.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Ричард Фейнман читать все книги автора по порядку

Ричард Фейнман - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Том 1. Механика, излучение и теплота отзывы


Отзывы читателей о книге Том 1. Механика, излучение и теплота, автор: Ричард Фейнман. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x