Ричард Фейнман - Том 1. Механика, излучение и теплота

Тут можно читать онлайн Ричард Фейнман - Том 1. Механика, излучение и теплота - бесплатно полную версию книги (целиком) без сокращений. Жанр: sci-phys. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Том 1. Механика, излучение и теплота
  • Автор:
  • Жанр:
  • Издательство:
    неизвестно
  • Год:
    неизвестен
  • ISBN:
    нет данных
  • Рейтинг:
    3/5. Голосов: 11
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 60
    • 1
    • 2
    • 3
    • 4
    • 5

Ричард Фейнман - Том 1. Механика, излучение и теплота краткое содержание

Том 1. Механика, излучение и теплота - описание и краткое содержание, автор Ричард Фейнман, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

Том 1. Механика, излучение и теплота - читать онлайн бесплатно полную версию (весь текст целиком)

Том 1. Механика, излучение и теплота - читать книгу онлайн бесплатно, автор Ричард Фейнман
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

До сих пор мы говорили о движении струны. Однако звук , который представляет собой движение воздуха, вызванное движением струны, тоже должен состоять из тех же гармоник, хотя здесь мы уже не можем говорить о собственных гармониках воздуха. К тому же относительная сила различных гармоник в воздухе может быть совсем другой, чем в струне, особенно если струна «связана» с воздухом посредством «звучащей доски». Разные гармоники по-разному связаны с воздухом.

Если для музыкального тона функция f ( t ) представляет давление воздуха в зависимости от времени (скажем, такая, как на фиг. 50.1.б), то можно ожидать, что f ( t ) записывается в виде суммы некоторого числа простых гармонических функций от времени (подобных cosω t ) для каждой из различных гармонических частот. Если период колебаний равен Т , то основная угловая частота будет ω=2π/ Т , а следующие гармоники будут 2ω, 3ω и т. д.

Здесь появляется небольшое усложнение. Мы не вправе ожидать, что для каждой частоты начальные фазы обязательно будут равны друг другу. Поэтому нужно пользоваться функциями типа cos(ωt+φ). Вместо этого, однако, проще использовать для каждой частоты как синус, так и косинус. Напомним, что

501 а поскольку φ постоянная то любые синусоидальные колебания с - фото 1320(50.1)

а поскольку φ — постоянная, то любые синусоидальные колебания с частотой ω могут быть записаны в виде суммы членов, в один из которых входит sinωt, а в другой — cos ω t .

Итак, мы приходим к заключению, что любая периодическая функция f ( t ) с периодом Т математически может быть записана в виде

502 где ω2πT а a и b числовые постоянные указывающие с каким весом - фото 1321(50.2)

где ω=2π/T, а a и b — числовые постоянные, указывающие, с каким весом каждая компонента колебания входит в общее колебание f ( t ). Для большей общности мы добавили в нашу формулу член с нулевой частотой а 0, хотя обычно для музыкальных тонов он равен нулю. Это просто сдвиг средней величины звукового давления (т. е. сдвиг «нулевого» уровня). С этим членом наша формула верна для любого случая. Уравнение (50.2) схематически показано на фиг. 50.2.

Фиг 502 Любая периодическая функция ft равна сумме простых гармонических - фото 1322

Фиг. 50.2. Любая периодическая функция f(t) равна сумме простых гармонических функций.

Амплитуды гармонических функций а n и b n выбираются по специальному правилу. На рисунке они показаны только схематически без соблюдения масштаба. [Ряд (50.2) называется рядом Фурье для функций f(t).]

Мы сказали, что любую периодическую функцию можно написать в таком виде. Следует внести небольшую поправку и подчеркнуть, что в такой ряд можно разложить вообще любую звуковую волну или любую функцию, с которой мы сталкиваемся в физике. Математики, конечно, могут придумать такую функцию, что ее нельзя будет составить из простых гармонических (например, функцию, которая «заворачивает» назад, так что для некоторых величин t она имеет два значения!). Однако здесь нам не стоит беспокоиться о таких функциях.

§ 3. Качество и гармония

Теперь мы уже можем описать, чем определяется «качество» музыкального тона. Оно определяется относительным количеством различных гармоник, т. е. относительными величинами а и b . Тон, содержащий только первую гармонику, называется «чистым», а тон с несколькими сильными гармониками называется «богатым». Скрипка дает гармоники в одной пропорции, а гобой — в другой.

Можно «изготовить» различные музыкальные тоны, если подсоединить к громкоговорителю несколько «осцилляторов». (Осциллятор обычно дает приблизительно чистые простые гармонические колебания) В качестве частот осцилляторов мы выберем ω, 2ω, 3ω и т. д. Приделав к каждому осциллятору регулятор громкости, можно смешивать гармоники в любой желаемой пропорции и тем самым создавать звуки различного качества. Примерно так работает электрический орган. Клавиши выбирают частоту основного осциллятора, а педали контролируют относительную пропорцию различных гармоник. С помощью этих регуляторов можно заставить орган звучать как флейту, или как гобой, или как скрипку.

Интересно, что для получения такого «искусственного» звука нет никакой необходимости разделять осцилляторы на «синусные» и «косинусные» — для каждой частоты нам достаточно только одного осциллятора. Наше ухо не очень чувствительно к относительной фазе гармоник. Оно воспринимает «синусную» и «косинусную» части частоты в целом . Поэтому наш анализ более точен, чем это необходимо для объяснения субъективной стороны музыки. Однако реакция микрофона или другого физического инструмента все-таки зависит от фазы, и наш полный анализ для таких случаев просто необходим.

«Качество» разговорной речи определяется гласными звуками. Форма рта определяет частоты собственных гармоник колебаний звука в нем. Некоторые из этих гармоник возбуждаются звуковыми волнами от голосовых связок. Таким способом происходит усиление одних гармоник по сравнению с другими. Когда мы меняем форму рта, мы даем преимущество гармоникам разных частот над другими. Благодаря этому эффекту, например, имеется разница между звуком «о—о—о» и звуком «а—а—а».

Всем известно, что каждый гласный звук, скажем «о—о—о», когда мы говорим или поем, всегда похож сам на себя как при высоких, так и при низких частотах. Из описанного нами механизма мы бы ожидали, что когда мы открываем рот и произносим звук «а—а—а», то тем самым мы выделяем какие-то определенные частоты, которые не должны измениться при повышении голоса. Таким образом, с изменением высоты отношение важных гармоник к основному тону, т. е. то, что мы называем «качеством», должно как будто изменяться. Очевидно, механизм, с помощью которого мы узнаем звуки речи, основан не на соотношении различных гармоник.

Что же можно теперь сказать об открытии Пифагора? Мы понимаем, что основные частоты двух струн, длины которых относятся как 2:3, тоже будут относиться как 3:2. Но почему же вместе они «приятно звучат»? Разгадку, по-видимому, нужно искать в частотах гармоник. Вторая гармоника короткой струны будет иметь ту же самую частоту, что и третья гармоника длинной струны. (Легко показать или просто поверить, что, задев струну, мы возбуждаем несколько сильных нижних гармоник.)

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Ричард Фейнман читать все книги автора по порядку

Ричард Фейнман - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Том 1. Механика, излучение и теплота отзывы


Отзывы читателей о книге Том 1. Механика, излучение и теплота, автор: Ричард Фейнман. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x