Ричард Фейнман - Том 1. Механика, излучение и теплота
- Название:Том 1. Механика, излучение и теплота
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:неизвестен
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Ричард Фейнман - Том 1. Механика, излучение и теплота краткое содержание
Том 1. Механика, излучение и теплота - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
§ 6. Ядерные силы
Мы заключим эту главу кратким обзором единственных ныне известных сил, отличающихся от перечисленных, — ядерных сил . Эти силы действуют внутри ядра атома, и, хотя их много изучали, никто ни разу еще не смог рассчитать силу, действующую между двумя ядрами; и фактически закон ядерных сил сейчас не известен. Эти силы имеют крайне незначительную протяженность действия — они действуют только на размерах ядра около 10 -13см. Поскольку частицы столь малы, а расстояния так коротки, нам нечего надеяться на законы Ньютона — здесь действуют только законы квантовой механики. Анализируя ядра, мы больше не говорим о силах; мы заменяем понятие силы понятием энергии взаимодействия двух частиц (позже об этом будет сказано подробнее). Любые формулы, которые можно написать для ядерных сил, представляют довольно грубые приближения, в которых опущены многие детали взаимодействия; выглядят они примерно так: силы внутри ядер убывают не обратно квадрату расстояния, а отмирают экспоненциально за некоторым расстоянием r 0(порядка 10 -13 см ) как F =(1/ r 2) exp (-r/r 0). Иначе говоря, чуть частицы удалятся, как силы тут же исчезают, хотя ближе 10 -13 см они очень велики. По-видимому, законы ядерных сил сложны до чрезвычайности; мы их не понимаем, и вся задача анализа фундаментального механизма, стоящего за ними, не решена. Попытки решить эту задачу привели к открытию множества необычных частиц, например π-мезонов, но происхождение сил все равно остается темным.
Глава 13 РАБОТА И ПОТЕНЦИАЛЬНАЯ ЭНЕРГИЯ (I)
§ 1. Работа падающего тела
В гл. 4 мы разобрали вопрос о сохранении энергии. При этом законами Ньютона мы не пользовались. Интересно теперь посмотреть, как возникает сохранение энергии из-за того, что действуют эти законы. Для ясности мы начнем с самых простых примеров и постепенно будем их усложнять.
Простейший пример сохранения энергии — это тело, падающее вниз, т. е. тело, движущееся только в вертикальном направлении. Если оно меняет свою высоту под влиянием только тяжести, то из-за движения оно обладает кинетической энергией Т (или к. э.) Кроме того, у него есть потенциальная энергия mgh (сокращенно U , или п. э.). Их сумма постоянна:
или
(13.1)
Мы хотим показать, что это утверждение правильно. Что значит доказать его правильность? Второй закон Ньютона говорит, как движется тело, как со временем изменяется его скорость (а именно, что в падении она растет пропорционально времени, а высота падения меняется как квадрат времени). Если поэтому отмерять высоту от нулевой точки (где тело покоилось), то не будет ничего странного в том, что она окажется равной квадрату скорости, умноженному на какие-то постоянные. Однако все же рассмотрим это повнимательней.
Попробуем вычислить прямо из второго закона Ньютона, как обязана меняться кинетическая энергия; мы продифференцируем кинетическую энергию по времени и потом применим закон Ньютона. Дифференцируя 1/ 2 mv 2по времени, получаем
(13.2)
потому что m считается постоянной. Но по второму закону Ньютона m ( dv / dt )= F , так что
(13.3)
В общем случае получается F· v, но для нашего одномерного случая лучше оставить просто произведение силы на скорость.
Сила в нашем простом примере постоянна, равна — mg и направлена вниз (знак минус именно это и показывает), а скорость есть степень изменения положения по вертикали (высоты h ) со временем. Поэтому степень изменения кинетической энергии равна — mg ( dh / dt ). Взгляните: что за чудо! Перед нами снова чья-то скорость изменения — скорость изменения со временем величины mgh ! Поэтому выходит, что с течением времени изменения в кинетической энергии и в величине mgh остаются равными и противоположными, так что их сумма остается неизменной. Что и требовалось доказать.
Мы только что показали, пользуясь Вторым законом Ньютона, что для постоянных сил энергия сохраняется, если только прибавлять потенциальную энергию mgh к кинетической 1/ 2 mv 2. Исследуем этот вопрос дальше; посмотрим, можно ли его обобщить, можно ли еще продвинуться в его понимании. Действует ли этот закон только для свободно падающих тел или является более общим? Из того, что мы знаем о сохранении энергии, можно ожидать, что он будет верен для тела, движущегося из одной точки в другую по кривой без трения и под действием одной лишь тяжести (фиг. 13.1).
Фиг. 13.1. Тело, движущееся под действием тяжести по кривой без трения.
Когда тело, начав двигаться с высоты Н , достигает высоты h , то опять должна быть верной та же формула, хотя бы скорость уже не была направлена по вертикали. Нам надо понять, почему она все еще правильна. Проведем тот же анализ; отыщем скорость изменения кинетической энергии во времени. Опять будет получаться mv ( dv / dt ) — скорость изменения величины импульса, т. е. сила в направлении движения — касательная сила F t . Итак,
Скорость — это скорость изменения расстояния вдоль кривой ds / dt , а касательная сила F t теперь оказывается меньше mg в отношении, равном отношению расстояния ds вдоль пути к вертикальному расстоянию dh . Иными словами,
так что
( ds выпадает). И опять, как прежде, мы получили величину — mg ( dh / dt ), равную скорости изменения mgh .
Чтобы точно уяснить себе, как вообще соблюдается сохранение энергии в механике, рассмотрим сейчас некоторые полезные понятия.
Читать дальшеИнтервал:
Закладка: