Ричард Фейнман - Том 1. Механика, излучение и теплота

Тут можно читать онлайн Ричард Фейнман - Том 1. Механика, излучение и теплота - бесплатно полную версию книги (целиком) без сокращений. Жанр: sci-phys. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Том 1. Механика, излучение и теплота
  • Автор:
  • Жанр:
  • Издательство:
    неизвестно
  • Год:
    неизвестен
  • ISBN:
    нет данных
  • Рейтинг:
    3/5. Голосов: 11
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 60
    • 1
    • 2
    • 3
    • 4
    • 5

Ричард Фейнман - Том 1. Механика, излучение и теплота краткое содержание

Том 1. Механика, излучение и теплота - описание и краткое содержание, автор Ричард Фейнман, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

Том 1. Механика, излучение и теплота - читать онлайн бесплатно полную версию (весь текст целиком)

Том 1. Механика, излучение и теплота - читать книгу онлайн бесплатно, автор Ричард Фейнман
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

§ 6. Ядерные силы

Мы заключим эту главу кратким обзором единственных ныне известных сил, отличающихся от перечисленных, — ядерных сил . Эти силы действуют внутри ядра атома, и, хотя их много изучали, никто ни разу еще не смог рассчитать силу, действующую между двумя ядрами; и фактически закон ядерных сил сейчас не известен. Эти силы имеют крайне незначительную протяженность действия — они действуют только на размерах ядра около 10 -13см. Поскольку частицы столь малы, а расстояния так коротки, нам нечего надеяться на законы Ньютона — здесь действуют только законы квантовой механики. Анализируя ядра, мы больше не говорим о силах; мы заменяем понятие силы понятием энергии взаимодействия двух частиц (позже об этом будет сказано подробнее). Любые формулы, которые можно написать для ядерных сил, представляют довольно грубые приближения, в которых опущены многие детали взаимодействия; выглядят они примерно так: силы внутри ядер убывают не обратно квадрату расстояния, а отмирают экспоненциально за некоторым расстоянием r 0(порядка 10 -13 см ) как F =(1/ r 2) exp (-r/r 0). Иначе говоря, чуть частицы удалятся, как силы тут же исчезают, хотя ближе 10 -13 см они очень велики. По-видимому, законы ядерных сил сложны до чрезвычайности; мы их не понимаем, и вся задача анализа фундаментального механизма, стоящего за ними, не решена. Попытки решить эту задачу привели к открытию множества необычных частиц, например π-мезонов, но происхождение сил все равно остается темным.

Глава 13 РАБОТА И ПОТЕНЦИАЛЬНАЯ ЭНЕРГИЯ (I)

§ 1. Работа падающего тела

В гл. 4 мы разобрали вопрос о сохранении энергии. При этом законами Ньютона мы не пользовались. Интересно теперь посмотреть, как возникает сохранение энергии из-за того, что действуют эти законы. Для ясности мы начнем с самых простых примеров и постепенно будем их усложнять.

Простейший пример сохранения энергии — это тело, падающее вниз, т. е. тело, движущееся только в вертикальном направлении. Если оно меняет свою высоту под влиянием только тяжести, то из-за движения оно обладает кинетической энергией Т (или к. э.) Кроме того, у него есть потенциальная энергия mgh (сокращенно U , или п. э.). Их сумма постоянна:

или 131 Мы хотим показать что это утверждение правильно Что значит - фото 268

или

131 Мы хотим показать что это утверждение правильно Что значит доказать - фото 269(13.1)

Мы хотим показать, что это утверждение правильно. Что значит доказать его правильность? Второй закон Ньютона говорит, как движется тело, как со временем изменяется его скорость (а именно, что в падении она растет пропорционально времени, а высота падения меняется как квадрат времени). Если поэтому отмерять высоту от нулевой точки (где тело покоилось), то не будет ничего странного в том, что она окажется равной квадрату скорости, умноженному на какие-то постоянные. Однако все же рассмотрим это повнимательней.

Попробуем вычислить прямо из второго закона Ньютона, как обязана меняться кинетическая энергия; мы продифференцируем кинетическую энергию по времени и потом применим закон Ньютона. Дифференцируя 1/ 2 mv 2по времени, получаем

132 потому что m считается постоянной Но по второму закону Ньютона m dv - фото 270(13.2)

потому что m считается постоянной. Но по второму закону Ньютона m ( dv / dt )= F , так что

133 В общем случае получается F v но для нашего одномерного случая лучше - фото 271(13.3)

В общем случае получается F· v, но для нашего одномерного случая лучше оставить просто произведение силы на скорость.

Сила в нашем простом примере постоянна, равна — mg и направлена вниз (знак минус именно это и показывает), а скорость есть степень изменения положения по вертикали (высоты h ) со временем. Поэтому степень изменения кинетической энергии равна — mg ( dh / dt ). Взгляните: что за чудо! Перед нами снова чья-то скорость изменения — скорость изменения со временем величины mgh ! Поэтому выходит, что с течением времени изменения в кинетической энергии и в величине mgh остаются равными и противоположными, так что их сумма остается неизменной. Что и требовалось доказать.

Мы только что показали, пользуясь Вторым законом Ньютона, что для постоянных сил энергия сохраняется, если только прибавлять потенциальную энергию mgh к кинетической 1/ 2 mv 2. Исследуем этот вопрос дальше; посмотрим, можно ли его обобщить, можно ли еще продвинуться в его понимании. Действует ли этот закон только для свободно падающих тел или является более общим? Из того, что мы знаем о сохранении энергии, можно ожидать, что он будет верен для тела, движущегося из одной точки в другую по кривой без трения и под действием одной лишь тяжести (фиг. 13.1).

Фиг 131 Тело движущееся под действием тяжести по кривой без трения - фото 272

Фиг. 13.1. Тело, движущееся под действием тяжести по кривой без трения.

Когда тело, начав двигаться с высоты Н , достигает высоты h , то опять должна быть верной та же формула, хотя бы скорость уже не была направлена по вертикали. Нам надо понять, почему она все еще правильна. Проведем тот же анализ; отыщем скорость изменения кинетической энергии во времени. Опять будет получаться mv ( dv / dt ) — скорость изменения величины импульса, т. е. сила в направлении движения — касательная сила F t . Итак,

Скорость это скорость изменения расстояния вдоль кривой ds dt а - фото 273

Скорость — это скорость изменения расстояния вдоль кривой ds / dt , а касательная сила F t теперь оказывается меньше mg в отношении, равном отношению расстояния ds вдоль пути к вертикальному расстоянию dh . Иными словами,

так что ds выпадает И опять как прежде мы получили величину mg - фото 274

так что

ds выпадает И опять как прежде мы получили величину mg dh dt - фото 275

( ds выпадает). И опять, как прежде, мы получили величину — mg ( dh / dt ), равную скорости изменения mgh .

Чтобы точно уяснить себе, как вообще соблюдается сохранение энергии в механике, рассмотрим сейчас некоторые полезные понятия.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Ричард Фейнман читать все книги автора по порядку

Ричард Фейнман - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Том 1. Механика, излучение и теплота отзывы


Отзывы читателей о книге Том 1. Механика, излучение и теплота, автор: Ричард Фейнман. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x