Ричард Фейнман - Том 1. Механика, излучение и теплота

Тут можно читать онлайн Ричард Фейнман - Том 1. Механика, излучение и теплота - бесплатно полную версию книги (целиком) без сокращений. Жанр: sci-phys. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Том 1. Механика, излучение и теплота
  • Автор:
  • Жанр:
  • Издательство:
    неизвестно
  • Год:
    неизвестен
  • ISBN:
    нет данных
  • Рейтинг:
    3/5. Голосов: 11
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 60
    • 1
    • 2
    • 3
    • 4
    • 5

Ричард Фейнман - Том 1. Механика, излучение и теплота краткое содержание

Том 1. Механика, излучение и теплота - описание и краткое содержание, автор Ричард Фейнман, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

Том 1. Механика, излучение и теплота - читать онлайн бесплатно полную версию (весь текст целиком)

Том 1. Механика, излучение и теплота - читать книгу онлайн бесплатно, автор Ричард Фейнман
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Этот одномерный случай рассматривать легко, потому что мы знаем, что изменение кинетической энергии равно интегралу от начала движения до конца от силы — GMm / r 2по перемещению dr

1311 В формуле нет никакого косинуса потому что сила и перемещение - фото 285(13.11)

В формуле нет никакого косинуса, потому что сила и перемещение направлены одинаково. Интегрировать dr / r 2легко; получается (—1/r), так что

1312 Перед нами другая формула для потенциальной энергии Уравнение - фото 286(13.12)

Перед нами другая формула для потенциальной энергии. Уравнение (13.12) говорит нам, что величина 1/ 2 mv 2— GMm / r , вычисленная в точке 1, в точке 2 или в любой другой, остается постоянной.

У нас теперь есть формула для потенциальной энергии в поле тяготения для вертикального движения. Здесь возникает интересный вопрос: можно ли добиться вечного движения в поле тяготения? Поле-то меняется, в разных местах у него разная напряженность и разное направление. Нельзя ли взять бесконечную ленту без трения и запустить ее, скажем, так: пусть она сперва поднимает тело из одной точки в другую, потом проводит его по дуге окружности в третью точку, опускает на некоторый уровень, сдвигает по наклонному направлению и выводит на новый путь и т. п., так что по возвращении в начальную точку оказывается, что поле тяготения совершило некоторую работу и кинетическая энергия тела возросла? Нельзя ли так начертить эту траекторию, чтобы, обойдя по ней, тело приобрело чуть-чуть больше скорости, чем имело вначале? Так получится вечное движение. Но ведь оно невозможно, значит, мы обязаны доказать, что такая траектория немыслима.

Фиг 133 Замкнутый путь обхода в поле тяготения Мы должны доказать - фото 287

Фиг. 13.3. Замкнутый путь обхода в поле тяготения.

Мы должны доказать следующее предположение: раз трения нет, тело должно вернуться ни с меньшей, ни с большей скоростью, а как раз с такой, чтобы еще и еще делать круги по этому замкнутому пути. Или, другими словами, вся работа, произведенная в движении по замкнутому пути, должна быть нулем для сил тяжести, потому что если бы она не была нулем, то можно было бы получить энергию за счет такого движения тела. (Если бы работа оказалась меньше нуля, так что скорость в конце обхода уменьшилась бы, то для получения энергии стоило бы только повернуть обратно; силы ведь зависят не от направления движения, а только от положения. Если в одном направлении работа получится с плюсом, то в обратном она будет с минусом; любая ненулевая работа означает создание вечного двигателя.) Так что же, действительно ли работа равна нулю? Попробуем показать, что да. Сперва мы лишь на пальцах поясним, почему это так, а уж потом оформим математически. Положим, мы выдумали траекторию, показанную на фиг. 13.3; масса падает от 1 к 2, поворачивает до 3, обратно поднимается к 4, затем через 5, 6, 7, 8 движется обратно к 1. Все линии идут либо по радиусу, либо по кругу с центром М . Какая работа совершается на таком пути? Между 1 и 2 она равна произведению GMm на разность 1/r в этих точках:

От 2 до 3 сила в точности направлена поперек движения и W 230 От 3 к 4 - фото 288

От 2 до 3 сила в точности направлена поперек движения, и W 23=0. От 3 к 4

Так же получаются W 450 W 56 GMm1r 6 1r 5 W 670 W 78 GMm1r 8 - фото 289

Так же получаются W 45=0, W 56=— GMm(1/r 6— 1/r 5), W 67=0, W 78=— GMm(1/r 8— 1/r 7) и W 81=0. Всего

Но ведь r 2r 3 r 4r 5 r 6r 7 r 8 r 1 Поэтому W0 Но возникает - фото 290

Но ведь r 2=r 3, r 4=r 5, r 6=r 7, r 8= r 1. Поэтому W=0.

Но возникает подозрение, не слишком ли эта кривая проста. А что даст настоящая траектория? Что ж, попробуем настоящую. Сразу же ясно, что ее можно достаточно точно представить как ряд зазубрин (фиг. 13.4) и поэтому... и т. д., что и требовалось доказать.

Фиг 134 Плавный путь обхода Показан увеличенный отрезок этого пути и - фото 291

Фиг. 13.4. «Плавный» путь обхода. Показан увеличенный отрезок этого пути и близкая к нему траектория, состоящая из радиальных и круговых участков, а также один из зубцов этой траектории.

Но надо еще посмотреть, действительно ли работа обхода вокруг маленького треугольника тоже равна нулю. Увеличим один из треугольников (см. фиг. 13.4). Равны ли работы по пути от a к b и от b к c работе, совершаемой, когда идешь напрямик от a к c ? Пусть сила действует в каком-то направлении. Расположим треугольник так, чтобы у его катета bc было как раз такое направление. Предположим также, что сам треугольник так мал, что сила всюду на нем постоянна. Какова работа на отрезке ac ? Она равна

поскольку сила постоянна Теперь определим работу на двух катетах На - фото 292

(поскольку сила постоянна). Теперь определим работу на двух катетах. На вертикальном катете ab сила перпендикулярна к ds , так что работа равна нулю. На горизонтальном катете bc

Мы убеждаемся таким образом что работа обхода по бокам маленького треугольника - фото 293

Мы убеждаемся таким образом, что работа обхода по бокам маленького треугольника такая же, как и по склону, потому что s cosθ равно х . Мы уже показали прежде, что работа при движении по зазубринам (как на фиг. 13.3) равна нулю, а теперь видим, что производимая работа одинакова, независимо от того, движемся ли мы по зазубринам или срезаем путь между ними (если только зазубрины малы, но ведь ничто не мешает сделать их такими); поэтому работа обхода по любому замкнутому пути в поле тяготения равна нулю .

Это очень примечательный результат. Благодаря ему нам становятся известны такие подробности о движении планет, о которых мы раньше и не догадывались. Выясняется, что когда планета вертится вокруг Солнца одна, без спутников и в отсутствие каких-либо других сил, то квадрат ее скорости минус некоторая константа, деленная на расстояние до Солнца, вдоль орбиты не меняется. Например, чем ближе планета к Солнцу, тем быстрее она движется. Но насколько быстрее? А вот насколько: если вместо движения вокруг Солнца вы толкнете ее к Солнцу с той же скоростью и подождете, пока она не упадет на нужное расстояние, то приобретенная скорость будет как раз такой, какой планета обладает на этой орбите, потому что получился просто другой пример сложного пути обхода. Если планета вернется по такому пути обратно, ее кинетическая энергия окажется прежней. Поэтому независимо от того, движется ли она по настоящей невозмущенной орбите или же по сложному пути (но без трения), кинетическая энергия в момент возвращения на орбиту оказывается как раз такой, какой нужно.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Ричард Фейнман читать все книги автора по порядку

Ричард Фейнман - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Том 1. Механика, излучение и теплота отзывы


Отзывы читателей о книге Том 1. Механика, излучение и теплота, автор: Ричард Фейнман. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x