Ричард Фейнман - Том 2. Электромагнетизм и материя

Тут можно читать онлайн Ричард Фейнман - Том 2. Электромагнетизм и материя - бесплатно полную версию книги (целиком) без сокращений. Жанр: sci-phys. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Том 2. Электромагнетизм и материя
  • Автор:
  • Жанр:
  • Издательство:
    неизвестно
  • Год:
    неизвестен
  • ISBN:
    нет данных
  • Рейтинг:
    5/5. Голосов: 11
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 100
    • 1
    • 2
    • 3
    • 4
    • 5

Ричард Фейнман - Том 2. Электромагнетизм и материя краткое содержание

Том 2. Электромагнетизм и материя - описание и краткое содержание, автор Ричард Фейнман, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Повторить : гл. 12 (вып. 1) «Характеристики силы»

Том 2. Электромагнетизм и материя - читать онлайн бесплатно полную версию (весь текст целиком)

Том 2. Электромагнетизм и материя - читать книгу онлайн бесплатно, автор Ричард Фейнман
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Уравнения Максвелла привели нас к нового типа уравнению для потенциалов φ и А, но с одной и той же математической формой для всех четырех функций φ, А х , А у и А z . Раз мы научились решать эти уравнения, то можем получить Ви Еиз × Eи- φ-∂ A/∂ t . Мы приходим к другой форме электромагнитных законов, в точности эквивалентной уравнениям Максвелла; с ними во многих случаях обращаться гораздо проще.

Фактически мы уже решали уравнение, весьма похожее на (18.26). Когда мы изучали звук в гл. 47 (вып. 4), мы имели уравнение в форме

и видели что оно описывает распространение волн в xнаправлении со скоростью с - фото 1029

и видели, что оно описывает распространение волн в x-направлении со скоростью с . Уравнение (18.26) это соответствующее волновое уравнение для трех измерений. Поэтому в области, где больше нет зарядов и токов, решение этих уравнений не означает, что φ и А— нули. (Хотя на самом деле нулевое решение есть одно из возможных решений.) Имеются решения, представляющие некоторую совокупность φ и А, которые меняются со временем, но всегда движутся со скоростью с . Поля передвигаются вперед через свободное пространство, как в нашем примере в начале главы.

С новым членом, добавленным Максвеллом в уравнение IV, мы смогли записать полевые уравнения в терминах Аи φ в форме, которая проста и сразу же позволяет выявить существование электромагнитных волн. Для многих практических целей еще будет удобно использовать первоначальные уравнения в терминах Еи В. Но они — по ту сторону горы, на которую мы уже вскарабкались. Теперь мы можем посмотреть вокруг. Все будет выглядеть иначе — нас ожидают новые, прекрасные пейзажи.

Главa 19 ПРИНЦИП НАИМЕНЬШЕГО ДЕЙСТВИЯ [26] Эта лекция никак не связана со всем остальным. Она прочитана лишь для того, чтобы отвлечься от основной темы и немного передохнуть. (Перевод надписей, сделанных на доске, приведен около рисунков, над стрелками.— Прим. ред.)

Когда я учился в школе, наш учитель физики, по фамилии Бадер, однажды зазвал меня к себе после урока и сказал: «У тебя вид такой, как будто тебе все страшно надоело; послушай-ка об одной интересной вещи». И он рассказал мне нечто, что мне показалось поистине захватывающим. Даже сейчас, хотя с тех пор прошла уже уйма времени, это продолжает меня увлекать. И всякий раз, когда я вспоминаю о сказанном, я вновь принимаюсь за работу. И на этот раз, готовясь к лекции, я поймал себя на том, что вновь анализирую все то же самое. И, вместо того чтобы готовиться к лекции, я взялся за решение новой задачи. Предмет, о котором я говорю,— это принцип наименьшего действия .

Вот что сказал мне тогда мой учитель Бадер: «Пусть, к примеру, у тебя имеется частица в поле тяжести; эта частица, выйдя откуда-то, свободно движется куда-то в другую точку. Ты подбросил ее, скажем, кверху, а она взлетела, а потом упала.

здесь истинное движение там От исходного места к конечному она прошла за - фото 1030

здесь * истинное движение * там

От исходного места к конечному она прошла за какое-то время. Попробуй теперь какое-то другое движение. Пусть для того, чтобы перейти «отсюда сюда», она двигалась уже не так, как раньше, а вот так:

здесь воображаемое движение там но все равно очутилась на нужном месте в - фото 1031

здесь * воображаемое движение * там

но все равно очутилась на нужном месте в тот же самый момент времени, что и раньше».

«И вот,— продолжал учитель,— если ты подсчитаешь кинетическую энергию в каждый момент времени на пути частицы, вычтешь из нее потенциальную энергию и проинтегрируешь разность по всему тому времени, когда происходило движение, то увидишь, что число, которое получится, будет больше , чем при истинном движении частицы.

Иными словами, законы Ньютона можно сформулировать не в виде F= m a, а вот как: средняя кинетическая энергия минус средняя потенциальная энергия достигает своего самого наименьшего значения на той траектории, по которой предмет двигается в действительности от одного места к другому.

Попробую пояснить тебе это чуть понятнее.

Если взять поле тяготения и обозначить траекторию частицы x ( t ), где х — высота над землей (обойдемся пока одним измерением; пусть траектория пролегает только вверх и вниз, а не в стороны), то кинетическая энергия будет 1/ 2 m ( dx / dt ) 2, а потенциальная энергия в произвольный момент времени будет равна mgx .

Теперь я для какого-то момента движения по траектории беру разность кинетической и потенциальной энергий и интегрирую по всему времени от начала до конца. Пусть в начальный момент времени t 1движение началось на какой-то высоте, а кончилось в момент t 2на другой определенной высоте.

Тогда интеграл равен Истинное движение совершается по некоторой кривой как - фото 1032

Тогда интеграл равен

Истинное движение совершается по некоторой кривой как функция времени она - фото 1033

Истинное движение совершается по некоторой кривой (как функция времени она является параболой) и приводит к какому-то определенному значению интеграла. Но можно представить себе какое-то другое движение: сперва резкий подъем, а потом какие-то причудливые колебания.

Можно подсчитать разность потенциальной и кинетической энергий на таком пути - фото 1034

Можно подсчитать разность потенциальной и кинетической энергий на таком пути... или на любом другом. И самое поразительное — что настоящий путь это тот, по которому этот интеграл наименьший.

Давай проверим это. Для начала разберем такой случай: у свободной частицы вовсе нет потенциальной энергии. Тогда правило говорит, что при переходе от одной точки к другой за заданное время интеграл от кинетической энергии должен оказаться наименьшим. А это значит, что частица обязана двигаться равномерно. (И это правильно, мы же с тобой знаем, что скорость в таком движении постоянна.) А почему равномерно? Разберемся в этом. Если бы было иначе, то временами скорость частицы превысила бы среднюю, а временами была бы ниже ее, а средняя скорость была бы одинаковой, потому что частице надо было бы дойти «отсюда сюда» за условленное время. Например, если тебе нужно попасть из дому в школу на своей машине за определенное время, то сделать это можно по-разному: ты можешь сперва гнать, как сумасшедший, а в конце притормозить, или ехать с одинаковой скоростью, или сначала можешь даже отправиться в обратную сторону, а уж потом повернуть к школе, и т. д. Во всех случаях средняя скорость, конечно, должна быть одной и той же — частное от деления расстояния от дома до школы на время. Но и при данной средней скорости ты иногда двигался слишком быстро, а иногда чересчур медленно. А средний квадрат чего-то, что отклоняется от среднего, как известно, всегда больше квадрата среднего; значит, интеграл от кинетической энергии при колебаниях скорости движения всегда будет больше, нежели при движении с постоянной скоростью. Ты видишь, что интеграл достигнет минимума, когда скорость будет постоянной (при отсутствии сил). Правильный путь таков.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Ричард Фейнман читать все книги автора по порядку

Ричард Фейнман - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Том 2. Электромагнетизм и материя отзывы


Отзывы читателей о книге Том 2. Электромагнетизм и материя, автор: Ричард Фейнман. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x