Ричард Фейнман - Том 2. Электромагнетизм и материя
- Название:Том 2. Электромагнетизм и материя
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:неизвестен
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Ричард Фейнман - Том 2. Электромагнетизм и материя краткое содержание
Том 2. Электромагнетизм и материя - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Я сказал, что мы получим закон Ньютона. Это не совсем верно, потому что в закон Ньютона входят и неконсервативные силы, например трение. Ньютон утверждал, что т аравно всякой F. Принцип же наименьшего действия справедлив только для консервативных систем, таких, где все силы могут быть получены из потенциальной функции. Но ведь вы знаете, что на микроскопическом уровне, т. е. на самом глубинном физическом уровне, неконсервативных сил не существует. Неконсервативные силы (такие, как трение) появляются только от того, что мы пренебрегаем микроскопическими сложными эффектами: просто слишком много частиц приходится анализировать. Фундаментальные же законы могут быть выражены в виде принципа наименьшего действия.
Позвольте перейти к дальнейшим обобщениям. Положим, нас интересует, что будет, когда частица движется релятивистски. Пока мы не получили правильного релятивистского уравнения движения; F= m aверно только в нерелятивистских движениях. Встает вопрос: существует ли в релятивистском случае соответствующий принцип наименьшего действия? Да, существует. Формула в релятивистском случае такова:
Первая часть интеграла действия — это произведение массы покоя m 0на с 2и на интеграл от функции скорости √(1- v 2/ c 2). Затем вместо того, чтобы вычитать потенциальную энергию, мы имеем интегралы от скалярного потенциала φ и от векторного потенциала А, умноженного на v. Конечно, здесь приняты во внимание только электромагнитные силы. Все электрические и магнитные поля выражены в терминах φ и А. Такая функция действия дает полную теорию релятивистского движения отдельной частицы в электромагнитном поле.
Конечно, вы должны понимать, что всюду, где я написал v, прежде чем делать выкладки, следует подставить dx / dt вместо v x и т. д. Кроме того, там, где я писал просто х, у, z , вы должны представить себе точки в момент t : x ( t ), y ( t ), z ( t ). Собственно, только после таких подстановок и замен v у вас получится формула для действия релятивистской частицы. Пусть самые умелые из вас попытаются доказать, что эта формула для действия действительно дает правильные уравнения движения теории относительности. Позвольте лишь посоветовать для начала отбросить А, т. е. обойтись пока без магнитных полей. Тогда вы должны будете получить компоненты уравнения движения d p/ dt =- q ∇φ, где, как вы, вероятно, помните, p= m v/√(1- v 2/ с 2).
Включить в рассмотрение векторный потенциал А намного труднее. Вариации тогда становятся несравненно более сложными. Но в конце сила оказывается равной тому, чему следует: q( E+ v× B). Но позабавьтесь с этим сами.
Мне хотелось бы подчеркнуть, что в общем случае (к примеру, в релятивистской формуле) под интегралом в действии уже не стоит разность кинетической и потенциальной энергий. Это годилось только в нерелятивистском приближении. Например, член m 0 c 2√(1- v 2/ с 2) — это не то, что называют кинетической энергией. Вопрос о том, каким должно быть действие для произвольного частного случая, может быть решен после некоторого числа проб и ошибок. Это задача того же типа, что и определение, каковы должны быть уравнения движения. Вы просто должны поиграть с известными вам уравнениями и посмотреть, можно ли их написать в виде принципа наименьшего действия.
Еще одно замечание по поводу терминологии. Ту функцию, которую интегрируют по времени, чтобы получить действие S , называют лагранжианом ℒ . Это функция, зависящая только от скоростей и положений частиц. Так что принцип наименьшего действия записывается также в виде
где под x i и v i подразумеваются все компоненты координат и скоростей. Если вы когда-нибудь услышите, что кто-то говорит о «лагранжиане», знайте, что речь идет о функции, применяемой для получения S . Для релятивистского движения в электромагнитном поле
Кроме того, я должен отметить, что самые дотошные и педантичные люди не называют S действием. Его именуют «первой главной функцией Гамильтона». Но читать лекцию о «принципе наименьшей первой главной функции Гамильтона» было свыше моих сил. Я назвал это «действием». Да к тому же все больше и больше людей называют это «действием». Видите ли, исторически действием было названо нечто другое, не столь полезное для науки, но я думаю, что разумнее изменить определение. Теперь и вы начнете именовать новую функцию действием, а вскоре и все вообще станут называть ее этим простым именем.
Теперь я хочу сообщить вам по поводу нашей темы кое-что, похожее на те рассуждения, которые я вел по поводу принципа кратчайшего времени. Существует разница в самом существе закона, утверждающего, что некоторый интеграл, взятый от одной точки до другой, имеет минимум,— закона, который сообщает нам что-то обо всем пути сразу, и закона, который говорит, что когда вы двигаетесь, то, значит, есть сила, приводящая к ускорению. Второй подход докладывает вам о каждом вашем шаге, он прослеживает ваш путь пядь за пядью, а первый выдает сразу какое-то общее утверждение обо всем пройденном пути. Толкуя о свете, мы говорили о связи этих двух подходов. Теперь я хочу объяснить вам, отчего должны существовать дифференциальные законы, если имеется такой принцип — принцип наименьшего действия. Причина вот в чем: рассмотрим действительно пройденный в пространстве и времени путь. Как и прежде, обойдемся одним измерением, так что можно будет начертить график зависимости x от t . Вдоль истинного пути S достигает минимума. Положим, что у нас есть этот путь и что он проходит через некоторую точку а пространства и времени и через другую соседнюю точку b .
Теперь, если весь интеграл от t 1до t 2достиг минимума, необходимо, чтобы интеграл вдоль маленького участочка от а до b тоже был минимальным. Не может быть, чтобы часть от а до b хоть чуточку превосходила минимум. Иначе вы могли бы подвигать туда-сюда кривую на этом участочке и снизить немного значение всего интеграла.
Читать дальшеИнтервал:
Закладка: